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Abstract

As opposed to trees that use a single type of decision node, an omnivariate decision
tree contains nodes of different types, univariate, linear or linear multivariate. We
propose to use Structural Risk Minimization (SRM) to choose between node types
in omnivariate decision tree construction to match the complexity of a node to the
complexity of the data reaching that node. We compare SRM with other model
selection techniques including Akaike’s Information Criterion (AIC), Bayesian In-
formation Criterion (BIC) and Crossvalidation (CV) to choose between the three
types of nodes on standard datasets from the UCI and Delve repositories. We see
that omnivariate trees obtained via SRM with a small percentage of multivariate
nodes close to the root generalize better or at least as accurately as those constructed
using other model selection techniques.

Key words: Classification; machine learning; model selection; structural risk
minimization; decision tree

1 Introduction

In machine learning the knowledge is extracted from a training sample for
future prediction. Most machine learning methods make accurate predictions
but are not interpretable, on the other hand decision trees are simple and
easily comprehensible. They are robust to noisy data and can learn disjunctive
expressions [26]. Surveys of work on constructing and simplifying decision trees
can be found in [7], [27] and [36]. A recent survey comparing different decision
tree methods with other classification algorithms is given in [23].

A decision tree is made up of internal decision nodes and terminal leaves. The
input vector is composed of d attributes, x = [x1, . . . , xd]

T , and the aim in
classification is to assign x to one of K > 2 mutually exclusive and exhaustive
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classes. Each internal node m implements a decision function, fm(x), where
each branch of the node corresponds to one outcome of the decision. Each
leaf carries a class label. Geometrically, each fm(x) defines a discriminant in
the d-dimensional input space dividing it into as many subspaces as there are
branches. As one takes a path from the root to a leaf, these subspaces are
further subdivided until we end up at a part of the input space which contains
instances of one class only.

In a univariate decision tree, the decision at internal node m uses only one
attribute, i.e., one dimension of x, xj . If that attribute is numeric, the decision
is of the form

fm(x) : xj + wm0 > 0 (1)

where wm0 is some constant number. This defines a discriminant which is
orthogonal to axis xj , intersects it at xj = −wm0 and divides the input space
into two [29].

In a linear multivariate decision tree, each internal node uses a linear combi-
nation of all attributes:

fm(x) : w
T
mx + wm0 =

d
∑

j=1

wmjxj + wm0 > 0 (2)

To be able to apply the weighted sum, all the attributes should be numeric and
discrete values need be represented numerically (usually by 1-of-L encoding)
beforehand. Note that the univariate numeric node is a special case of the
multivariate linear node, where all but one of wmj is 0 and the remaining, 1.
In this linear case, each decision node divides the input space into two with
a hyperplane of arbitrary orientation and position where successive decision
nodes on a path from the root to a leaf further divide these into two and the
leaf nodes define a polyhedra in the input space.

In a nonlinear multivariate decision tree, the decision takes the form

fm(x) :
k

∑

j=1

wjφj(x) > 0 (3)

where φj(x) are the nonlinear basis functions. In this work, we use a poly-
nomial basis function of degree 2 where for example for x ∈ ℜ2, φ(x) =
[ 1, x1, x2, x

2

1
, x2

2
, x1x2] which gives us a quadratic tree.

In multivariate linear trees, Linear Discriminant Analysis (LDA) was first used
by Friedman [14] for constructing decision trees. The algorithm has binary
splits at each node, where a split is like in C4.5, i.e. xi < w0 but xi can be
an original variable, transgenerated, or adaptive. Linear discriminant analysis
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is applied to construct an adaptive variable. Kolmogorof-Smirnoff distance is
used as the error measure. When the number of classes K is > 2, it converts the
problem into K different subproblems, where each subproblem separates one
class from the others. LTREE [15] is a multivariate decision tree algorithm
with binary splits. LTREE uses LDA to construct new features, which are
linear combinations of the original features. For all constructed features, the
best split is found using C4.5’s exhaustive search technique. The best of these is
selected to create the two children of the current node. These new constructed
features can also be used down the tree in the children of that node. Functional
Trees [16] make simultenaous use of functional nodes and functional leaves in
prediction problems. Bias-variance decomposition of the error showed that,
the variance can be reduced using functional leaves, while bias can be reduced
using functional inner nodes.

In CART [6], parameter adaptation is through backfitting: At each step, all
the coefficients wmj except one is fixed and that coefficient is tuned for possi-
ble improvement in terms of impurity. One cycles through all j until there is
no further improvement. In OC1 [28], an extension to CART is made to get
out of the local optima. A small random vector is added to wm once there
is convergence through backfitting. Adding a vector perturbs all coefficients
together and makes a conjugate jump in the coefficient space. Another exten-
sion proposed is to run the method several (20-50) times and choose the best
solution in terms of impurity.

In FACT [25], with K classes a node can have K branches. Each branch
has its modified linear discriminant function calculated using LDA and an
instance is channeled to the ith branch to minimize an estimated expected
risk. QUEST [24] is a revised version of FACT and uses binary splits at each
decision node. It solves the problem of dividing K classes into two classes by
using unsupervised 2-means clustering on the class means of the data. QUEST
also differs from FACT in the way that it does not assume equal variances and
uses Quadratic Discriminant Analysis (QDA) to find the two roots for the split
point and uses the appropriate one. CRUISE[19] is a multivariate algorithm
with K-way nodes. Like FACT, CRUISE finds K − 1 splits using LDA. The
departure from FACT occurs when the split assigns the same class to all its
K children. Because such a split is not useful, the best next class is chosen.
Another departure occurs while assigning a class to a leaf: When there are
two or more classes which have the same number of instances in that leaf,
FACT selects randomly one of them but CRUISE selects the class which has
not been assigned to any leaf node.

In LMDT [8], with K classes, as in FACT, a node is allowed to have K
branches. For each class, i.e., branch, there is a vector of parameters, and the
node implements a K-way split. There is an iterative algorithm that adjusts
the parameters of classes to minimize the number of misclassifications, rather
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than an impurity measure like entropy or Gini.

In Logistic model trees [20], logistic classification is used to find the best split
at each decision node. They use a stagewise fitting process to construct logistic
classification models that can select relevant attributes in the data.

In this paper, we compare model selection techniques AIC, BIC, SRM and
CV in the context of decision tree induction. In Section 2, we show previously
applied model selection techniques in tree induction. In Section 3 we explain
how to apply Structural Risk Minimization technique in decision tree induc-
tion. We give our experiments and results in Section 4 and conclude in Section
5.

2 Tuning Model Complexity

The model selection problem in decision trees can be defined as choosing the
best model at each node of the tree. In our experiments, we use three candidate
models, namely, univariate, linear multivariate, and nonlinear multivariate
(quadratic). At each node of the tree, we train these three models to separate
two class groups from each other and choose the best. While going from the
univariate to more complex nodes, the idea is to check if we can have a large
decrease in bias with a small increase in variance.

We have previously proposed omnivariate decision tree architecture [35], where
we have used cross-validation to decide on the best model from three different
candidates including a univariate node, multivariate linear node (linear percep-
tron) and a multivariate nonlinear node (multilayer perceptron (MLP)). Con-
tinuing this work, Altınçay [4] proposed use of model ensemble-based nodes
where a group of models are considered for making decisions at each decision
node. The ensemble members are generated via perturbing model parame-
ters and input parameters. In another work, Li [22] used a novel classifiability
measure instead of pairwise statistical tests to perform model selection at each
decision node. Their proposed classifiability measure is related to Bayes error
and the boundary complexity.

In our second work [37], we have included AIC and BIC in model selection and
used a quadratic model instead of the MLP as the nonlinear model because it
learns faster. For finding the best split at a decision node we use Linear Dis-
criminant Analysis (LDA) [3]. For the univariate model, we use the univariate
version of LDA and the number of parameters is 2, one for the index of the
used attribute and one for the threshold. For the multivariate linear model,
we use the multivariate version of LDA and to avoid a singular covariance
matrix, we use Principal Component Analysis (PCA) to get k new dimensions
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and the number of parameters is k + 1. For the multivariate quadratic model,
we choose a polynomial kernel of degree 2, (x1 +x2+. . .+xd +1)2, and use the
multivariate LDA to find the separating hyperplane. Again to avoid a singular
covariance matrix, we use PCA to get m new dimensions and the number
of parameters is m + 1. Then, we calculate the generalization error of each
candidate model using the corresponding loglikelihood and model complexity.
In the last step, we choose the optimal model having the least generalization
error.

To calculate the error at a decision node, we first assign classes to the left
and right child nodes. Assume that CL and CR are classes assigned to the left
and right nodes respectively. NL

i and NR
i are the number of instances of class

i choosing left and right branches and NCL
and NCR

denote the number of
instances of the classes CL and CR respectively:

NCL
= max

i
NL

i , NCR
= max

i
NR

i (4)

The error at a decision node is calculated by subtracting the number of in-
stances of these two classes (which are correctly classified as they will label
the leaves) from the total number of instances:

e =
N − NCL

− NCR

N
(5)

When N is the total number of instances, Ni is the number of instances of
class i, and NL and NR are the total number of instances choosing left and
right branches respectively, the log likelihood is given as

L =
K

∑

i=1

NL
i log

NL
i

NL
+

K
∑

i=1

NR
i log

NR
i

NR
(6)

Given the log likelihood, different model selection techniques use different
measures, which will be explained in the next subsections.

2.1 Akaike Information Criterion

AIC [1] is calculated as

AIC = 2(−L + p) (7)

where L represents the loglikelihood of the data and p represents the number
of free parameters of the model. We choose the model with the smallest AIC
over the three models we have.
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2.2 Bayesian Information Criterion

BIC [32] is calculated as

BIC = −L +
p

2
log N (8)

where N is the number of data points. Like in AIC, we choose the model with
the smallest BIC value.

2.3 Cross-validation

We use 5×2 cross-validation and train all three models and test them on the
validation set ten times and then apply the one-sided version of the 5×2 cv t
test [13].

When we have two candidate models we choose the simpler model, if it has
smaller or equal error rate compared to the complex model. Only if the com-
plex model has significantly smaller error rate then it is chosen. When we
have three candidate models, univariate U , linear multivariate L, multivari-
ate quadratic Q in increasing order of complexity with population error rates
denoted by eU , eL, eQ, we choose considering both the expected error and the
model complexity. Q is chosen if both H0 : eL ≤ eQ and H0 : eU ≤ eQ are
rejected. Otherwise, L is chosen if H0 : eU ≤ eL is rejected. Otherwise U is
chosen.

Note that AIC, BIC do not require a validation set and training is done once,
whereas with CV, in each fold, half of the data is left out for validation and
training is done ten times.

3 Structural Risk Minimization

Structural risk minimization (SRM) [33] uses the VC dimension of the estima-
tors to select the best model by choosing the model with the smallest upper
bound for the generalization error. In order to calculate the VC generalization
bounds of a model, (i) the VC-dimension of the model representing its com-
plexity, and (ii) the error of the model on the training data, are required. In a
two-class classification problem, the generalization bound of a model is given
as [10]

Egeneralization = e +
λ

2



1 +

√

1 +
4e

λ



 (9)
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where e is the training error and

λ = a1

h[log(a2N/h) + 1] − log(ν)

N
(10)

Here, h represents the VC dimension of the model, ν represents the confidence
level (it is recommended to use ν = 1

√

N
for large sample sizes), and a1 and

a2 are empirically fitted constants. In our experiments we use a1 = 0.2 and
a2 = 0.8.

VC dimension for a class of functions f(x, α) where α denotes the parameter
vector is defined to be the largest number of points that can be shattered by
members of f(x, α). A set of data points is shattered by a class of functions
f(x, α) if for each possible class labeling of the points, one can find a member
of f(x, α) which perfectly separates them. For example, in two dimensions,
we can separate three points with a line, but we can not separate four points
(if their class labelings are done like in the famous XOR problem). Therefore,
the VC dimension of the linear estimator class in two dimensions is 3.

3.1 Structural Risk Minimization in Omnivariate Decision Tree Induction

In our experiments, we have three different models (univariate model, multi-
variate linear model, multivariate quadratic model) at each decision node to
choose from. We calculate the generalization error of these three models using
Equations 9, 10 and choose the model with the smallest generalization error.
To calculate generalization error, we need (i) the training error (which can be
estimated via Equation 5) and (ii) the VC-dimension of each model.

The VC-dimension of the multivariate linear model with d dimensions is d
+ 1. The multivariate quadratic model can be written as a linear model with
d2 + 3d + 2

2
(d parameters for x2

i ,
d2 − d

2
parameters for xixj , d parameters for

xi and 1 parameter for bias) parameters, which we take as its VC-dimension
(We will also show in section 4.2 that these numbers are in accordance with our
VC-dimension estimations). Since the VC-dimension of the univariate model
whose best split is found by LDA is not known, we used a technique proposed
in [34] to estimate the VC-dimension experimentally. This uses the fact that
for two-class classification problems, the deviation of the expected training
error of the classifier from 0.5 (which is the worst a two-class classifier can
do) is correlated with the VC-dimension of that classifier and the data size,
and a theoretical formula for this correlation is derived. A set of experiments
on artificial sets are done and based on the frequency of the errors on these
sets, a best fit for the theoretical formula is calculated. The details of this
technique and experimental results on three models are given in sections 3.2
and 4.2 respectively.
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In AIC, BIC, and CV the same criterion is used in both growing the tree and
post-pruning it. Postpruning, where we decide to remove or not to remove a
subtree, has originally been proposed using cross-validation; we just compare
the validation error of a subtree and the leaf to replace it. For AIC and BIC,
the number of parameters of a subtree can be taken as the sum of parameters
in all the nodes. For SRM however, we need to calculate the VC dimension of
a subtree possibly containing nodes of different types, and this is not straight-
forward. This is because (i) we do not know the VC-dimension of any pure
subtree (subtree containing nodes of the same type) with n nodes, (ii) the
VC-dimension may change according to the structure of the decision tree, (iii)
even if we know the VC-dimension of pure trees, our trees are not pure and
we can not simply add VC-dimensions of pure trees to get the VC-dimension
of omnivariate trees, where the univariate, linear or quadratic nodes can be
anywhere in the decision tree. Therefore we use pre-pruning, where at each
decision node we have now four choices to select from. The first three original
choices are univariate, linear and quadratic models, the fourth choice is the
simplest model, the leaf which we take as a constant model with VC-dimension
1. If the leaf has the smallest generalization error, we simply make the node
leaf node.

3.2 Estimation of VC-dimension: Uniform Design

As pointed out in the previous section, we need a methodology to estimate the
VC-dimension of the univariate model whose VC-dimension can not be found
theoretically. In this section, we briefly review the methodology that we have
used in estimating the VC-dimension [34], namely uniform design and how we
apply it.

With respect to the VC-theory, the maximum difference ǫ(N) between the
error rates of two independently labeled data sets of size N is bounded by
Φ(N/h) where

Φ(ρ) = a
ln(2ρ) + 1

ρ − k
(

√

√

√

√1 +
b(ρ − k)

ln(2ρ) + 1
+ 1) (11)

when ρ ≥ 0.5 with ρ = N/h and the constants a = 0.16, b = 1.2, k = 0.14928
are determined empirically [34]. If ρ < 0.5, Φ(ρ) = 1. According to Vapnik et
al. (1994), this bound is tight; so we can consider ǫ(N) to be approximately
equal to Φ(N/h).

An experiment design consists of design points and a number of experiments
for each point. In our case, an experiment is performed to get a single epsilon
estimate ǫ(N) for a specific number of data points N . If the number of ex-
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1 VcEstimate UniformDesign(d; D)
2 for i = 1 to D
3 Ni = Sample size where 0.5 ≤ Ni/h ≤ 30
4 for j = 1 to mi

5 Generate a random uniform sample S
of size 2Ni

6 Split S into two samples
of equal size (S1, S2)

7 Flip class labels of S2

8 C = TrainClassifier(S)
9 Flip class labels of S2 back again
10 E(S1) = Error rate of C on S1

11 E(S2) = Error rate of C on S2

12 ǫ(Ni,j) = |E(S1) − E(S2)|

13 ǫ(Ni) =

∑mi

j=1 ǫ(Ni,j)

mi

14 h = Best fit between Φ(Ni/h) and ǫ(Ni)
15 return h

Fig. 1. Pseudocode of Uniform Design: d: Number of input features, D: Number of
design points

periments at the design points are equal, the design is called uniform design
[21].

The pseudocode of uniform design for estimating the VC-dimension is given in
Figure 1. In a single experiment, to get the maximum difference of error rates,
the classifier (in our case univariate model) is trained on the whole sample S
(Line 8), is tested on the first part of the dataset S1 to minimize the error
rate (Line 10), and then tested on the second part of the dataset S2 with class
labels complemented to maximize the error rate (Lines 9, 11).

In uniform design, at each design point i, mi experiments are performed (Line
4) and the average of epsilon estimates ǫ(Ni) is calculated (Line 13). In order
to reduce the variability of the estimates, the sample size for each design
point, Ni, is different and selected in the range 0.5 ≤ Ni/h ≤ 30 (Line 3). The
VC-dimension of the univariate model is then h (Line 14) which minimizes

D
∑

i=1

[ǫ(Ni) − Φ(Ni/h)]2 (12)
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4 Experiments

4.1 Experimental Setup

4.1.1 Datasets

We use a total of 17 two-class datasets where 14 of them (artificial, breast,

bupa, german, haberman, heart, hepatitis, mammographic, monks, parkinsons,

pima, tictactoe, transfusion, vote) are from UCI [5] and 3 (titanic, ringnorm,

and twonorm) are from Delve [30] repositories.

4.1.2 Learning algorithms

We compared our proposed SRM based omnivariate decision tree algorithm
with six different algorithms:

• AIC: Omnivariate decision tree algorithm where model selection is done
using Akaike Information Criterion.

• BIC: Omnivariate decision tree algorithm where model selection is done
using Bayesian Information Criterion.

• CV: Omnivariate decision tree algorithm where model selection is done using
cross-validation.

• LDA: Linear discriminant analysis classifier [3].
• QDA: Quadratic discriminant analysis classifier [3].
• SVM: Support vector machine with a linear kernel. We use the LIBSVM

2.82 library [9].

4.1.3 Comparison Criteria

Our comparison criteria are generalization error (on the validation folds of
5×2 cross-validation), model complexity (as measured by the total number of
free parameters) and training time of the learning algorithm (in seconds).

4.1.4 Statistical Test used in Comparisons

To compare two learning algorithms, statistical tests have been proposed
[13,12]. In choosing between two, one can use a pairwise test to compare
their performance and select the one that has better performance. Typically,
cross-validation is used to generate a set of training, validation folds, and we
compare their performance on the validation folds. Examples of such tests are
parametric tests, such as k-fold paired t test, 5 × 2 cv t test [13], 5 × 2 cv
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Fig. 2. VC-dimension estimate of of univariate, linear and quadratic models with
respect to number of features in the dataset.

F test [2], nonparametric tests, such as the sign test and Friedman’s test, or
range tests, such as Wilcoxon signed rank test.

Although these tests are good for comparing the means of two populations
(that is, the performances of two algorithms), they can not be used to com-
pare multiple populations (algorithms). A further need is to be able to compare
algorithms over not a single data set but over multiple data sets. Demsar [12]
examines various methods, such as the sign test and Friedman’s test together
with its post-hoc Nemenyi’s test, for comparing multiple algorithms over mul-
tiple data sets. Following the same idea, we used sign test in comparing our
proposed SRM based omnivariate decision tree algorithm with other learning
algorithms.

4.2 VC-Dimension Estimation

In the following experiment, we estimate the VC-dimension of three models
namely (a) univariate, (b) linear multivariate, and (c) quadratic models using
uniform design. To cover the state space well, we estimate the VC-dimension
on d dimensional data where d varies from 1 to 20. Finding the eigenvectors
of a k dimensional matrix (as required by PCA) takes O(k3) time. In the
multivariate quadratic model, we have d2 parameters and therefore we need
approximately O(d6) time to calculate the eigenvectors. Because of this time
burden, in quadratic model d varies from 1 to 10.

With d input features the multivariate linear and quadratic models have d+1

and
d2 + 3d + 2

2
number of free parameters respectively. Figure 2 shows VC-

dimension estimates for this case. We see that for both multivariate linear
and quadratic models, the estimated VC-dimension is nearly equal to the
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number of free parameters. For univariate model, the VC-dimension estimate
is nearly equal to log d + 1, which we can safely use as the VC-dimension in
our generalization error calculations.

4.3 Performance of SRM Compared with Other Omnivariate Decision Tree

Algorithms

In this subsection, we try to answer the following question that motivates us:
Is our proposed model selection technique SRM is at least as good as other
model selection techniques in terms of error, model complexity and learning
time? In order to answer this question, we compared omnivariate trees based
on AIC, BIC, and CV with omnivariate trees based on SRM on 17 datasets.
The average and standard deviations of expected error, model complexity
of decision trees produced by different model selection techniques and time
required to construct the omnivariate decision trees for 17 datasets are given
in Tables 1, 2 and 3 respectively. Since there are more than two omnivariate
decision tree algorithms to compare, we give two tables where in the first table
the raw results are shown. The second table contains pairwise comparisons;
the entry (i, j) in this second table gives the number of datasets (out of 17) on
which method i is better than method j (without any check for significance).
The number of wins that are statistically significantly different using the sign
test over 17 runs are shown in bold.

The average and standard deviations of expected error of the omnivariate
decision trees for 17 datasets are given in Table 1. In terms of expected error
rate, SRM is significantly better than AIC (12 wins against 4 losses) and
BIC (13 wins against 3 losses). Although the difference is not statistically
significant, SRM is also better than CV in 12 datasets. Other comparisons do
not yield a significant difference, but in general we can say that CV is better
than AIC and BIC, where they have nearly equal performance.

Table 2 shows total decision tree complexity in terms of number of free pa-
rameters for different omnivariate decision tree techniques. As explained in
Section 2, total complexity of an omnivariate decision tree is the sum of com-
plexities of its decision nodes. The complexity of univariate, multivariate linear
and multivariate quadratic decision nodes are 2, k + 1, and m + 1 respec-
tively, where k and m are the reduced number of dimensions after PCA for
multivariate linear and multivariate quadratic models respectively. The model
complexity table shows that SRM, BIC and CV construct simpler trees than
AIC, where BIC generates significantly simpler trees when compared with
them. The comparison result between BIC with AIC is in accordance with the
literature stating that BIC has a tendency to choose simpler models [17].
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Table 1
Expected error rates and number of wins of omnivariate decision tree algorithms us-
ing average error rates. The bold face entries show statistically significant difference
using the sign test.

Dataset AIC BIC CV SRM

artificial 0.00±0.00 0.56±1.78 2.00±3.41 0.00±0.00

breast 4.81±0.94 4.61±0.79 4.35±0.57 4.29±0.65

bupa 36.81±2.23 42.03±0.18 36.52±5.34 32.35±2.06

german 31.56±1.30 30.00±0.00 28.84±2.10 28.26±1.71

haberman 28.10±2.86 26.47±0.16 27.72±2.00 27.78±2.27

heart 22.37±3.44 41.63±8.90 18.96±3.15 25.70±1.98

hepatitis 22.46±4.54 23.74±4.52 20.26±2.17 18.33±3.04

m.graphic 19.33±1.82 46.31±0.06 19.31±1.75 18.69±1.00

monks 10.79±5.38 31.94±17.69 17.59±8.35 25.28±2.71

parkinsons 13.96±4.18 14.89±4.75 18.16±6.48 13.86±3.80

pima 30.44±2.38 34.90±0.00 30.36±5.86 23.72±1.21

ringnorm 3.26±0.12 5.18±0.37 3.75±1.17 2.62±0.25

tictactoe 20.52±3.15 13.72±11.15 14.38±4.29 24.70±1.85

titanic 21.19±0.87 21.66±0.77 21.66±0.97 22.04±0.76

vote 5.70±1.65 4.50±1.11 4.69±0.85 4.23±1.09

transfusion 23.80±0.00 23.80±0.00 23.69±0.34 23.40±0.66

twonorm 4.25±0.28 2.25±0.19 2.30±0.28 2.25±0.19

AIC BIC CV SRM

AIC 0 10 5 4

BIC 6 0 6 3

CV 12 10 0 5

SRM 12 13 12 0

Table 3 shows time required to generate the decision trees for each omnivariate
algorithm. Since CV tries all possible models ten times (because of 5×2 cross-
validation), whereas AIC, BIC and SRM tries all possible models once, the
former’s time complexity is much higher than the others. We also see that,
SRM is better than AIC and BIC. This is due to the fact that, SRM uses
prepruning for pruning the decision tree and therefore is able to cut down the
search early. On the other hand, AIC and BIC use postpruning, where they
generate whole tree (which takes time) and prune the decision subtrees whose
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Table 2
Tree complexities in terms of number of free parameters and number of wins of
omnivariate decision tree algorithms using average tree complexities. The bold face
entries show statistically significant difference using the sign test.

Dataset AIC BIC CV SRM

artificial 12.60±2.84 11.60±2.07 11.90±4.18 12.60±2.84

breast 63.20±11.77 26.80±6.20 20.80±12.93 15.10±6.87

bupa 133.20±16.17 1.00±0.00 13.30±12.53 24.60±15.37

german 342.50±24.39 1.00±0.00 19.50±32.54 241.70±53.39

haberman 12.70±14.57 1.00±0.00 4.50±6.72 9.90±12.85

heart 78.30±10.66 2.50±4.74 21.60±9.71 108.10±35.26

hepatitis 37.60±8.10 13.90±16.68 5.80±8.75 83.70±24.11

m.graphic 11.00±7.77 1.00±0.00 18.30±16.22 13.70±9.87

monks 64.90±35.41 6.70±8.99 37.60±15.46 13.40±29.73

parkinsons 34.50±5.54 30.70±5.38 10.60±10.57 23.50±7.63

pima 239.80±18.41 1.00±0.00 5.30±5.62 20.40±15.14

ringnorm 626.10±31.07 227.90±0.32 366.00±115.17 520.10±71.16

tictactoe 301.30±39.25 80.10±45.50 121.90±30.15 267.40±39.35

titanic 24.70±4.52 10.30±3.59 12.60±4.30 6.10±1.45

vote 34.90±9.54 9.40±7.32 7.60±4.65 27.10±18.06

transfusion 1.00±0.00 1.00±0.00 2.60±5.06 4.90±6.49

twonorm 437.10±27.30 23.00±0.00 26.90±12.33 23.00±0.00

AIC BIC CV SRM

AIC 0 0 2 4

BIC 16 0 13 13

CV 15 4 0 12

SRM 12 3 5 0

removal do not decrease the generalization error calculated via AIC and BIC.
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Table 3
Time complexities in terms of seconds to generate the decision tree and number of
wins of omnivariate decision tree algorithms using average time complexities. The
bold face entries show statistically significant difference using the sign test.

Dataset AIC BIC CV SRM

artificial 0.15±0.00 0.15±0.02 1.34±0.16 0.14±0.00

breast 0.34±0.04 0.39±0.06 1.81±0.74 0.18±0.03

bupa 0.16±0.02 0.16±0.01 0.78±0.05 0.03±0.01

german 680.86±74.67 700.99±67.98 3416.58±242.67 39.45±9.54

haberman 0.01±0.00 0.01±0.01 0.05±0.01 0.00±0.00

heart 3.49±0.64 3.47±0.52 16.40±3.22 0.85±0.10

hepatitis 16.43±5.99 18.09±5.08 57.16±25.43 5.45±1.48

m.graphic 33.84±1.63 33.19±1.28 164.53±23.02 3.15±1.05

monks 22.30±5.85 22.59±5.84 145.14±19.86 3.12±1.17

parkinsons 43.87±7.26 46.49±6.27 237.60±28.20 17.39±2.80

pima 1.16±0.16 1.18±0.14 5.70±0.57 0.12±0.01

ringnorm 121.65±27.07 359.93±21.04 442.94±301.72 28.25±2.67

tictactoe 699.23±94.47 634.94±79.65 3046.30±599.68 91.86±13.63

titanic 0.70±0.03 0.68±0.02 4.09±0.26 0.23±0.02

vote 407.29±98.26 465.57±94.78 2086.34±861.60 184.78±36.62

transfusion 0.06±0.00 0.06±0.00 0.28±0.02 0.01±0.01

twonorm 261.56±16.81 286.42±20.79 1216.78±97.66 20.73±0.09

AIC BIC CV SRM

AIC 0 9 17 0

BIC 4 0 17 0

CV 0 0 0 0

SRM 17 17 17 0

4.4 Model Selection in SRM Compared with Other Omnivariate Decision

Tree Algorithms

Table 4 shows the average and standard deviations of node counts of omni-
variate decision trees. We see that SRM and BIC choose smaller trees but with
more complex nodes. BIC and SRM usually generate smallest trees whereas
other omnivariate decision tree algorithms use more than one tree node; espe-
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Table 4
The average and standard deviations of node counts of omnivariate decision trees.

Dataset AIC BIC CV SRM

artificial 2.00±0.00 2.20±0.42 2.70±1.16 2.00±0.00

breast 12.40±3.34 5.70±2.26 1.20±0.63 1.30±0.67

bupa 38.30±4.42 0.00±0.00 3.10±3.48 2.60±1.65

german 101.00±10.26 0.00±0.00 3.80±7.27 1.50±0.85

haberman 3.50±4.33 0.00±0.00 1.10±2.13 1.50±2.01

heart 21.10±3.57 0.10±0.32 3.40±2.67 2.30±1.49

hepatitis 11.00±2.49 4.30±5.56 0.50±0.85 2.20±1.14

m.graphic 1.50±0.97 0.00±0.00 4.70±5.85 1.70±0.95

monks 20.00±10.90 1.90±3.00 11.60±4.99 1.20±0.63

parkinsons 9.60±2.37 9.70±2.00 2.50±2.84 1.80±0.63

pima 70.00±6.88 0.00±0.00 0.50±0.71 1.20±0.42

ringnorm 58.50±10.75 1.00±0.00 2.50±1.90 3.00±1.25

tictactoe 51.70±13.47 26.00±15.28 15.50±6.42 2.70±0.67

titanic 5.00±1.49 1.90±0.88 2.60±1.26 1.70±0.48

vote 8.70±2.45 2.80±2.44 2.20±1.55 2.20±1.03

transfusion 0.00±0.00 0.00±0.00 0.40±1.26 0.70±1.25

twonorm 122.70±5.66 1.00±0.00 2.30±4.11 1.00±0.00

cially, AIC generates most populated decision trees.

It may be the case that a linear model is appropriate on a dataset and a
univariate may be sufficient on another. The best model even changes as we
go down the same tree; simpler models suffice as we get closer to the leaves.
The best model is not known a priori and the omnivariate tree does the model
selection itself, freeing the user from an explicit trial of possible models.

The number of times the univariate, multivariate linear and multivariate
quadratic nodes are selected in omnivariate decision trees produced by AIC,
BIC, CV and SRM are given in Table 5. We see that, as expected, quadratic
nodes are selected the least and the univariate nodes are selected the most,
except with SRM. Although SRM has the smallest number of nodes, it has the
highest percentage of multivariate nodes (linear 31.05 percent, nonlinear 41.17
percent). AIC, BIC and CV do not prune as much as SRM and therefore their
node counts are higher than the SRM tree. CV has the second highest per-
centage of multivariate nodes (linear 12.71 percent, quadratic 5.12 percent).
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Table 5
The number of times univariate, multivariate linear and multivariate quadratic
nodes selected in decision trees produced by AIC, BIC, CV, and SRM.

AIC BIC CV SRM

U L Q U L Q U L Q U L Q

artificial 8 9 3 8 14 0 18 9 0 8 9 3

breast 103 18 3 46 11 0 2 7 3 0 13 0

bupa 345 32 6 0 0 0 25 6 0 3 14 9

german 988 22 0 0 0 0 35 2 1 0 2 13

haberman 32 2 1 0 0 0 10 1 0 4 5 6

heart 199 12 0 0 1 0 25 9 0 6 1 16

hepatitis 108 2 0 43 0 0 3 2 0 3 6 13

m.graphic 10 5 0 0 0 0 44 3 0 9 6 2

monks 193 7 0 19 0 0 113 3 0 9 1 2

parkinsons 92 3 1 96 1 0 23 2 0 6 6 6

pima 659 39 2 0 0 0 1 4 0 0 9 3

ringnorm 563 2 20 0 0 10 8 1 16 3 2 25

tictactoe 497 10 10 259 1 0 138 9 8 1 4 22

titanic 38 2 10 15 0 4 16 7 3 17 0 0

vote 81 6 0 28 0 0 22 0 0 14 5 3

transfusion 0 0 0 0 0 0 2 2 0 2 2 3

twonorm 1189 38 0 0 10 0 13 10 0 0 10 0

Σ 5105 209 56 514 38 14 498 77 31 85 95 126

% 95.1 3.9 1.0 90.8 6.7 2.5 82.2 12.7 5.1 27.8 31.0 41.2

Where other model selection criteria seem to generate large trees with simple
nodes, SRM seems to favour smaller trees with more complex nodes.

The number of times univariate, multivariate linear and multivariate quadratic
nodes selected at different levels of tree for AIC, BIC, CV and SRM are given
in Figure 3. We see that AIC selects quadratic nodes more than BIC. All
omnivariate techniques except BIC select more complex models in the first
level of the tree (linear for AIC and CV, quadratic for SRM). After the first
level, univariate model is the first choice in all omnivariate techniques except
SRM, where univariate model remains as the third choice until the fourth
level. Again with the exception of SRM, all omnivariate techniques select
linear model more than quadratic model in every level of the tree, where the
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Fig. 3. Number of times univariate, multivariate linear and multivariate quadratic
nodes selected at different levels of tree for AIC, BIC, CV and SRM.

former does the reverse.

We also see that, there are a lot of nodes in the deeper levels of the trees of
AIC, BIC and CV, whereas the maximum depth of an SRM tree is 4 with a
small number of nodes at each level. With respect to the performance of SRM
in accuracy compared with other model selection techniques in omnivariate
decision tree induction, we can easily say that there is usually no need to
generate large trees, small trees can perform as well as large trees, and some-
times they do better. This may be due to two factors. First, SRM and BIC
usually choose simpler models than other two model selection algorithms AIC
and CV [17]. Second, our SRM based omnivariate decision tree algorithm uses
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prepruning, which usually prunes trees more than post-pruning.

There are also other related works that deal with simplicity in either decision
tree induction or rule-learning. Holte [18] showed that single node univariate
decision trees (decision stumps) perform quite well on 17 datasets taken from
UCI repository. In another work Rückert [31] showed that with much smaller
rule sets (which composed of fewer literals) one can obtain similar level of
accuracy as other state-of-the-art rule-learners.

4.5 Comparison of SRM with Nontree Algorithms

In this subsection, we try to answer the following question that motivates us:
Is our proposed model selection technique SRM is at least as good as state-of-
the-art nontree algorithms in terms of error, model complexity and learning
time? In order to answer this question, we compared omnivariate trees based
on SRM with LDA, QDA and SVM on 17 datasets. The average and standard
deviations of expected error, model complexity of different learning algorithms
and time required to train those algorithms for 17 datasets are given in Tables
6, 7 and 8 respectively.

The average and standard deviations of expected error of the SRM based om-
nivariate decision tree algorithm and other state-of-the-art algorithms for 17
datasets are given in Table 6. There seems no statistical significant difference
between four algorithms, though SRM wins more than any other three algo-
rithms if compared (10 wins - 6 losses against LDA, 10 wins - 7 losses against
QDA and 11 wins - 6 losses against SVM). If in a dataset nonlinear models
get the best performance, such as on ringnorm, SRM will select nonlinear
models as the root nodes because their performance is better than the linear
models. Most of the datasets in our experiments are not so complex and they
can be solved with linear models. Therefore the total win and loss numbers
are usually dominated by those results.

Table 7 shows total model complexity in terms of number of free parameters
for LDA, QDA, SVM and SRM. The model complexity of LDA, QDA are d +

1,
d2 + 3d + 2

2
respectively. The model complexity of SVM is d × sv, where d

is number of features in the dataset and sv is total number of support vectors
found for that problem. We see a clear ordering of SRM > LDA > QDA >
SVM from the table.

Table 8 shows time required to train each learning algorithm. Since LDA only
does linear discriminant analysis, it has the smallest training time. QDA is
the second winner, because this time only the number of parameters increases.
There is not significant difference between SRM and SVM although SRM has

19



Table 6
Expected error rates and number of wins of all algorithms using average error rates.
The bold face entries show statistically significant difference using the sign test.

Dataset LDA QDA SVM SRM

artificial 5.44±5.21 3.94±4.72 2.38±3.47 0.00±0.00

breast 4.32±0.59 5.04±1.74 3.78±0.88 4.29±0.65

bupa 32.30±2.54 39.19±2.02 34.03±2.71 32.35±2.06

german 23.72±1.85 31.94±8.01 26.00±1.31 28.26±1.71

haberman 24.90±1.29 25.17±1.23 26.73±0.48 27.78±2.27

heart 15.85±1.92 19.93±2.41 17.11±2.43 25.70±1.98

hepatitis 22.05±4.33 19.09±1.96 18.71±3.13 18.33±3.04

m.graphic 21.21±2.01 21.83±2.09 20.17±2.16 18.69±1.00

monks 54.91±4.64 8.56±6.72 25.00±2.93 25.28±2.71

parkinsons 16.52±3.92 13.14±2.64 15.80±2.69 13.86±3.80

pima 23.10±1.33 26.30±1.81 24.66±2.67 23.72±1.21

ringnorm 23.09±0.42 1.45±0.16 23.75±0.61 2.62±0.25

tictactoe 32.65±2.16 5.34±1.20 1.67±0.50 24.70±1.85

titanic 24.68±2.14 25.44±1.23 22.37±0.74 22.04±0.76

vote 15.68±1.81 5.56±1.30 4.55±1.32 4.23±1.09

transfusion 22.97±0.73 22.27±0.92 23.72±0.18 23.40±0.66

twonorm 2.25±0.19 2.29±0.20 2.48±0.36 2.25±0.19

LDA QDA SVM SRM

LDA 0 9 8 6

QDA 8 0 6 7

SVM 9 11 0 6

SRM 10 10 11 0

12 wins against 5 losses. Omnivariate tree trains all three models (univariate,
multivariate linear and multivariate quadratic) at each node, where multi-
variate quadratic model requires most time to obtain (O(d6) time to find the
eigenvectors of the covariance matrix). LIBSVM uses sequential minimal op-
timization (SMO) to train Support Vector Machines with a time complexity
of O(N3) approximately.
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Table 7
Model complexities in terms of number of free parameters and number of wins of all
algorithms using average model complexities. The bold face entries show statistically
significant difference using the sign test.

Dataset LDA QDA SVM SRM

artificial 62.00±0.00 132.00±0.00 289.00±294.94 12.60±2.84

breast 101.00±0.00 110.00±0.00 1178.10±715.13 15.10±6.87

bupa 50.00±0.00 56.00±0.00 663.00±32.53 24.60±15.37

german 600.00±0.00 650.00±0.00 6316.80±115.82 241.70±53.39

haberman 17.00±0.00 20.00±0.00 211.50±14.58 9.90±12.85

heart 197.00±0.00 210.00±0.00 963.30±279.25 108.10±35.26

hepatitis 392.60±10.84 420.00±0.00 556.70±41.09 83.70±24.11

m.graphic 206.00±0.00 272.00±0.00 4156.50±1155.69 13.70±9.87

monks 211.00±0.00 342.00±0.00 2551.70±114.31 13.40±29.73

parkinsons 292.40±7.59 552.00±0.00 833.80±77.23 23.50±7.63

pima 82.00±0.00 90.00±0.00 1564.80±173.12 20.40±15.14

ringnorm 442.00±0.00 462.00±0.00 39854.00±2334.71 520.10±71.16

tictactoe 495.00±0.00 812.00±0.00 8653.50±621.36 267.40±39.35

titanic 52.00±0.00 90.00±0.00 4556.00±5.66 6.10±1.45

vote 525.60±17.56 1122.00±0.00 1606.40±266.79 27.10±18.06

transfusion 20.00±0.00 30.00±0.00 589.20±6.55 4.90±6.49

twonorm 442.00±0.00 462.00±0.00 12880.00±5784.69 23.00±0.00

LDA QDA SVM SRM

LDA 0 17 17 1

QDA 0 0 17 1

SVM 0 0 0 0

SRM 16 16 17 0

5 Conclusion

We propose a novel omnivariate decision tree architecture based on Structural
Risk Minimization. The ideal node type is determined via model selection
method SRM. Such an omnivariate tree, instead of assuming the same bias
at each node, matches the complexity of a node with the data reaching that
node. Our previous works and also other works indicate that omnivariate
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Table 8
Time complexities in terms of seconds to train the classifier and number of wins of all
algorithms using average time complexities. The bold face entries show statistically
significant difference using the sign test.

Dataset LDA QDA SVM SRM

artificial 0.00±0.00 0.03±0.00 0.04±0.01 0.14±0.00

breast 0.01±0.01 0.00±0.01 1.30±1.08 0.18±0.03

bupa 0.00±0.00 0.00±0.00 2.83±0.66 0.03±0.01

german 0.03±0.00 0.03±0.00 87.19±5.14 39.45±9.54

haberman 0.00±0.00 0.00±0.00 1.68±0.78 0.00±0.00

heart 0.00±0.00 0.00±0.00 3.43±2.59 0.85±0.10

hepatitis 0.01±0.01 0.14±0.03 0.06±0.06 5.45±1.48

m.graphic 0.01±0.00 0.01±0.00 53.98±37.62 3.15±1.05

monks 0.01±0.01 0.16±0.00 38.44±4.75 3.12±1.17

parkinsons 0.01±0.00 2.76±0.10 0.89±0.50 17.39±2.80

pima 0.00±0.00 0.01±0.01 11.37±1.67 0.12±0.01

ringnorm 0.14±0.01 0.14±0.00 1119.56±44.08 28.25±2.67

tictactoe 0.03±0.00 1.63±0.02 15.49±13.04 91.86±13.63

titanic 0.01±0.00 0.01±0.00 23.73±12.12 0.23±0.02

vote 0.02±0.00 10.62±0.38 0.41±0.62 184.78±36.62

transfusion 0.00±0.00 0.00±0.00 3.83±2.02 0.01±0.01

twonorm 0.14±0.00 0.14±0.01 120.17±20.22 20.73±0.09

LDA QDA SVM SRM

LDA 0 7 17 16

QDA 1 0 14 16

SVM 0 3 0 5

SRM 0 0 12 0

architecture generalizes better than pure trees with the same type of node
everywhere.

For implementing SRM, we estimate the VC-dimension of univariate model
whose VC-dimension can not be found theoretically. Experimental results
showed that the VC-dimension estimate is equal to 1 + log d.

Our simulation results indicate that such an omnivariate architecture based
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on SRM generalizes at least as better as other omnivariate tree inducers using
AIC, BIC or CV. SRM and BIC omnivariate trees have the smallest number
of nodes with competitive complexity as CV.

Contrary to other omnivariate techniques, the univariate node type, is selected
the least, followed by the linear node and the quadratic node. On the other
hand, similar to other omnivariate techniques, more complex nodes are se-
lected early in the tree, closer to the root. Since there are more nodes in the
lower levels, the percentage of univariate nodes is much higher. This shows
that having a small percentage of multivariate (linear or quadratic) nodes is
effective.

In the literature, in choosing between nodes or choosing node parameters, ac-
curacy (information gain or some other measure calculated from fit to data) is
used in growing the tree and some other measure (cross-validation error on a
pruning set or MDL) has been used to prune the tree; the same is also true for
rule learners such as Ripper [11]. Because omnivariate approach allows choos-
ing among multiple models, it is also possible to have different algorithms for
the same node type and choose between them. That is, one can have a palette
of univariate nodes (one by LDA, one by information gain, etc) and the best
one will then be chosen. The same also holds for linear or nonlinear (quadratic,
other kernels, etc) nodes. Our emphasis is on the idea of an omnivariate de-
cision tree and the sound use of model selection in inducing it, rather than
the particular type of nodes we use in our example decision tree. The nice
thing about LDA is that the same criterion can be used in training univariate,
linear and quadratic nodes and we know that any difference is due to node
complexity.
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