Yazar "Ak, Kenan Emir" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Yayın Çok-hipotezli süperpikseller ile sahne bölütleme ve etiketleme(IEEE, 2015-06-19) Ak, Kenan Emir; Ateş, Hasan FehmiSüperpikseller son zamanlarda imge bölütleme ve sınıflandırma problemlerinde giderek önem kazanmaktadır. Sahne etiketlemede imge öncelikle bir süperpiksel algoritması ile görsel olarak tutarlı küçük parçalara bölütlenmekte; daha sonra süperpikseller farklı sınıflara ayrı¸stırılmaktadır. Sınıflandırma performansı kullanılan süperpiksel algoritmasının özellikleri ve parametre ayarlarından önemli ölçüde etkilenmektedir. Bu bildiride sahne etiketleme doğruluğunu iyileştirmek için birden fazla süperpiksel bölütleme sonucunu sınıflandırıcı seviyesinde kaynaştıran bir yöntem önerilmiştir. Öncelikle basit, parametrik olmayan ve eğitim gerektirmeyen SuperParsing algoritması kullanılarak süperpiksel etiketleri için olabilirlik oranları tespit edilir. Daha sonra alternatif süperpiksel bölütleme senaryoları için hesaplanan olabilirlik oranları piksel seviyesinde kaynaştırılarak, ilgili sahnenin bölütlenmesi ve etiketlenmesi tamamlanır. Önerilen yöntem 2,688 imge ve 33 etiket içeren SIFT Flow veri kümesi üzerinde test edilmiş ve SuperParsing’den daha yüksek sınıflandırma doğruluğu elde edilmiştir.Yayın Kernel likelihood estimation for superpixel image parsing(Springer Verlag, 2016) Ateş, Hasan Fehmi; Sünetci, Sercan; Ak, Kenan EmirIn superpixel-based image parsing, the image is first segmented into visually consistent small regions, i.e. superpixels; then superpixels are parsed into different categories. SuperParsing algorithm provides an elegant nonparametric solution to this problem without any need for classifier training. Superpixels are labeled based on the likelihood ratios that are computed from class conditional density estimates of feature vectors. In this paper, local kernel density estimation is proposed to improve the estimation of likelihood ratios and hence the labeling accuracy. By optimizing kernel bandwidths for each feature vector, feature densities are better estimated especially when the set of training samples is sparse. The proposed method is tested on the SIFT Flow dataset consisting of 2,688 images and 33 labels, and is shown to outperform SuperParsing and some of its extended versions in terms of classification accuracy.