Yazar "Armah, Courage" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Yayın Multi-task learning on mental disorder detection, sentiment analysis, and emotion detection using social media posts(Institute of Electrical and Electronics Engineers Inc., 2024) Armah, Courage; Dehkharghani, RahimMental disorders such as suicidal behavior, bipolar disorder, depressive disorders, and anxiety have been diagnosed among the youth recently. Social media platforms such as Reddit have become popular for anonymous posts. People are far more likely to share on these social media platforms what they really feel like in their real lives when they are anonymous. It is thus helpful to extract people's sentiments and feelings from these platforms in training models for mental disorder detection. This study uses multi-task learning techniques to examine the estimation of behaviors and mental states for early mental disease diagnosis. We propose a multi-task system trained on three related tasks: mental disorder detection as the primary task, emotion analysis, and sentiment analysis as auxiliary tasks. We took the SWMH dataset, which included four main different mental disorders already labeled (bipolar, depression, anxiety, and suicide) and offmychest. We then added labels for emotion and sentiment to the dataset. The observed results are comparable to previous studies in the field and demonstrate that deep learning multi-task frameworks can improve the accuracy of related text classification tasks when compared to training them separately as single-task systems.Yayın Multi-task learning on mental disorder detection, sentiment detection and emotion detection(Işık Üniversitesi, 2024-02-12) Armah, Courage; Dehkharghani, Rahim; Işık Üniversitesi, Lisansüstü Eğitim Enstitüsü, Bilgisayar Mühendisliği Yüksek Lisans Programı; Işık University, School of Graduate Studies, Computer Science Engineering Master ProgramSuicidal behavior is a global cause of life-threatening injury and most of the time, death. Mental disorders such as depression, anxiety, and bipolar are prevalent among the youth in recent decades. Social media are popular platforms for individuals to post their thoughts and feelings on. Extracting people’s sentiments and feelings from such online platforms would help detect mental disorders of the users to treat them before it becomes too late. This thesis investigates the use of multi-task learning systems and single-task learning techniques to estimate behaviors and mental states for early diagnosis. I used data mined from Reddit, one of the popular social media platforms that provides anonymity. Anonymity increases the chances of individuals sharing what they truly feel in their real life. The obtained results by the proposed approaches open new doors to the understanding of how multi-task systems can increase the performance of text classification problems such as depression detection, emotion detection, and sentiment analysis, trained together in a multi-task learning network when compared to their training in isolation in a single-task learning network. We used the SWMH dataset, already labeled by 5 different depression labels (depression, anxiety, suicide, bipolar, and off my chest) and then added emotion and polarity labels to it and made it publicly available for researchers in the literature. The obtained results in this study are also comparable to other approaches in the field.