Yazar "Cesur, Evren" seçeneğine göre listele
Listeleniyor 1 - 10 / 10
Sayfa Başına Sonuç
Sıralama seçenekleri
Yayın 3-D spatio-temporal Gabor-type filter implementations with Time-Derivative Cellular Neural Networks(IEEE, 2013) Yavuz, Oğuzhan; Tural Polat, Sadiye Nergis; Cesur, Evren; Tavşanoğlu, Ahmet VedatIn this paper, a 3-D spatio-temporal Gabor-type filter is implemented using Time-Derivative Cellular Neural Network (TDCNN) structure. To this end, the transfer function of the spatio-temporal filter previously constructed by cascading a CNN spatial filter with a temporal filter is shown to be made equal to that of a band-pass filter obtained using a TDCNN structure having first-order temporal derivative diffusion connections only. By equating the coefficients, we obtain the discrete-space Fourier transforms of the TDCNN templates of the Gabor-type band-pass filter. Taking the inverse Fourier transform yields the TDCNN templates. Simulation results are presented.Yayın Architecture of a fully pipelined real-time cellular neural network emulatort(IEEE-INST Electrical Electronics Engineers Inc, 2015-01) Yıldız, Nerhun; Cesur, Evren; Kayaer, Kamer; Tavşanoğlu, Ahmet Vedat; Alpay, MurathanIn this paper, architecture of a Real-Time Cellular Neural Network (CNN) Processor (RTCNNP-v2) is given and the implementation results are discussed. The proposed architecture has a fully pipelined structure, capable of processing full-HD 1080p@60 (1920 1080 resolution at 60 Hz frame rate, 124.4 MHz visible pixel rate) video streams, which is implemented on both high-end and low-cost FPGA devices, Altera Stratix IV GX 230, and Cyclone III C 25, respectively. Many features of the architecture are designed to be either pre-synthesis configurable or runtime programmable, which makes the processor extremely flexible, reusable, scalable, and practical.Yayın Design of a third generation real-time cellular neural network emulator(IEEE, 2014) Yıldız, Nerhun; Cesur, Evren; Tavşanoğlu, Ahmet VedatIn this paper, the features of the next generation Real-Time Cellular Neural Network Processor (RTCNNP-v3) are discussed. The RTCNNP-v2 structure is the only CNN implementation that is reported to be capable of processing full-HD 1080p@60 (1920 x 1080 resolution at 60 Hz frame rate) video images in real-time, due to its fully-pipelined architecture, however, it has some weaknesses like the inability to divide the processing in spatial domain, record and recall intermediate results to an external memory and has some issues in its internal memory coding. Those shortcomings are to be addressed in the next design of our CNN emulator - RTCNNP-v3, which will increase the range of applications and enable the implementation to match the requirements of the cutting-edge movie production technologies like UHD (4K) and the future FUHD (8K).Yayın A discussion on spatiotemporal filtering on a third generation real-time cellular neural network processor(IEEE Computer Society, 2016) Yıldız, Nerhun; Cesur, Evren; Tavşanoğlu, Ahmet VedatA third generation Real-Time Cellular Neural Network (CNN) Processor (RTCNNP-v3) is a CNN emulator currently being implemented targeting FPGA devices. Thanks to the frame buffer support of the RTCNNP-v3 it will be possible to store and recall multiple frames which will extend the range of applications that can be implemented with RTCNNP, including spatiotemporal filters. In this paper, the implementation method of a velocity-tuned filter currently being implemented is disclosed with further discussion.Yayın Hücresel sinir ağları kullanılarak el yazısı karakter tanıma uygulaması(IEEE, 2013-06-13) Çalık, Nurullah; Cesur, Evren; Tavşanoğlu, Ahmet VedatEl yazısı karakter tanıma, örüntü tanımanın önemli alanlarından biridir. Bu alanın kapsamında önemli belgelerin , arşivlerin ve diğer yazılı metinlerin sayısal ortamlara aktarılması yada yazıcının tanınması gibi problemler çözülmeye çalışılır. Bu problemler için birçok algoritma geliştirilmiştir. Geliştirilen bu algoritmalardan istenen, yüksek doğruluk oranının yanında FPGA gibi sayısal tasarımlara uygulanabilir olmasıdır. Bu nedenle sınıflandırma için kullanılan özellik vektörünün çıkartılmasında Gabor-benzeri Hücresel Sinir Ağı (HSA) filtreleri kullanılmıştır. Bu filtrelerin FPGA üzerinde verimli algoritmalar ile gerçeklenebilmektedir [10]. Bu sayede FIR türünde tasarlanan Gabor filtrelerine göre işlem süresi açısından daha verimli ve büyük harfler üzerinde doğruluk yüzdesi % 80 civarlarında olan bir algoritma geliştirilmiştir.Yayın Karma CPU + FPGA yapısı üzerinde tasarlanmış bilgisayar destekli sperm analizi sistemi(IEEE, 2015-06-19) Şavkay, Osman Levent; Tavşanoğlu, Ahmet Vedat; Yalçın, Müştak Erhan; Cesur, EvrenBu bildiride karma CPU + FPGA tabanlı bir donanım mimarisi üzerinde tasarlanan Bilgisayar Destekli Semen Analizi (BDSA) sistemi genel özellikleri ile anlatılmıştır. Spermatozoa motilite analizi hareketli çoklu nesne izleme algoritmasıdır, spermatozoa morfoloji analizi için ise ard arda uygulanan çeşitli durağan görüntü işleme yöntemleri ile yapılmaktadır. Sistemimizde kullanılan ve yüksek hız gerektiren hareketli ve durağan görüntü işleme işlevleri için FPGA yapısının paralel işlem yeteneğinden yararlanılmıştır. Çeşitli hesaplamalar ise geliştirilen özel yazılım ile CPU üzerinde gerçeklenmiştir. Biyolojik mikroskoba takılabilen bir HD dijital kamerayı da içermekte olan sistemimizin esnek programlanabilen ve tek başına çalışabilen bir akıllı sistem olarak çalışması da öngörülmüştür.Yayın On the way to a third generation real-time cellular neural network processor(IEEE Computer Society, 2016) Yıldız, Nerhun; Cesur, Evren; Tavşanoğlu, Ahmet VedatIn this proceeding, the architecture of a third generation Real-Time Cellular Neural Network (CNN) Processor (RTCNNP-v3) is disclosed, which is a digital CNN emulator to be implemented on an FPGA device. The previous generation emulator, RTCNNP-v2, is the only CNN implementation reported to be capable of processing full-HD 1080p@60 (1080×1920 resolution at 60 Hz frame rate) video images in real-time. However, there are some weaknesses in both the design and implementation of RTCNNP-v2, like the inability to process different parts of the video images in parallel, lack of support for recording and recalling intermediate frames using external memory and it has some jitter issues at computation rates above 200 MHz. All of those issues are addressed in the next architecture of our CNN emulator, RTCNNP-v3, which is being implemented of an FPGA device.Yayın Realization of preprocessing blocks of CNN based CASA system on FPGA(2013) Şavkay, Osman Levent; Yıldız, Nerhun; Cesur, Evren; Yalçın Müştak, Erhan; Tavşanoğlu, Ahmet VedatIn this paper, hardware optimization of the preprocessing part of a computer aided semen analysis (CASA) system is proposed, which is also implemented on an FPGA device as a working prototype. A real-time cellular neural network (CNN) emulator (RTCNNP-v2) is used for the realization of the image processing algorithms, whose regular, flexible and reconfigurable infrastructure simplifies the prototyping process. For future work, the post-processing part of the CASA system is proposed to be implemented on the same FPGA device as software, using either a soft or hard processor core. By the integration of the pre- and post-processing parts, the designed CASA system will be capable of processing full-HD 1080p@60 (1080×1920) video images in real-time.Yayın Realization of processing blocks of CNN based CASA system on CPU and FPGA(IEEE, 2014) Şavkay, Osman Levent; Cesur, Evren; Yıldız, Nerhun; Yalçın, Mustak Erhan; Tavşanoğlu, Ahmet VedatIn this paper, hardware optimization of the preprocessing and software implementation of the processing blocks of a computer aided semen analysis (CASA) system are proposed, which is also implemented on an FPGA and ARM device as a working prototype. The software implementation of the track initialization, track maintenance, data validation and classification blocks of the processing part are implemented on a Zynq7000 ARM Cortex-A9 processor. In the preprocessing part, a real-time cellular neural network (CNN) emulator (RTCNNP-v2) is used for the realization of the image processing algorithms, whose regular, flexible and reconfigurable infrastructure simplifies the prototyping process. The CASA system introduced in this paper is capable of processing full-HD 1080p@60 (1080 x 1920) video images in real-time.Yayın Sperm morphology analysis with CNN based algorithms(IEEE Computer Society, 2014-08-29) Şavkay, Osman Levent; Cesur, Evren; Yalçın, Müştak Erhan; Tavşanoğlu, Ahmet VedatIn this paper Morphological Analysis part of our proposed computer-aided sperm analysis system (CASA) is simulated and the results beside the algorithm steps are presented. The morphology analysis is simply dealing with shape of the sperms and extracting the shape characteristics in medical parameters. The characteristics are obtained by image processing algorithms which utilizes Cellular Nanoscale Network (CNN) based and spatial image processing blocks. The following calculation of medical parameters are obtained from the outputs of image processing blocks. The algorithm is so designed to adapt the final SoC architecture such as Xilinx Zynq7000 device.