Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Araştırmacılar
  • Projeler
  • Birimler
  • Analiz
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Dikmen, Onur" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Yayın
    Parallel univariate decision trees
    (Elsevier B.V., 2007-05-01) Yıldız, Olcay Taner; Dikmen, Onur
    Univariate decision tree algorithms are widely used in data mining because (i) they are easy to learn (ii) when trained they can be expressed in rule based manner. In several applications mainly including data mining, the dataset to be learned is very large. In those cases it is highly desirable to construct univariate decision trees in reasonable time. This may be accomplished by parallelizing univariate decision tree algorithms. In this paper, we first present two different univariate decision tree algorithms C4.5 and univariate linear discriminant tree. We show how to parallelize these algorithms in three ways: (i) feature based; (ii) node based; (iii) data based manners. Experimental results show that performance of the parallelizations highly depend on the dataset and the node based parallelization demonstrate good speedups.

| Işık Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Işık Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Şile, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim