Yazar "Ehsani, Razieh" seçeneğine göre listele
Listeleniyor 1 - 9 / 9
Sayfa Başına Sonuç
Sıralama seçenekleri
Yayın Chunking in Turkish with conditional random fields(Springer-Verlag, 2015-04-14) Yıldız, Olcay Taner; Solak, Ercan; Ehsani, Razieh; Görgün, OnurIn this paper, we report our work on chunking in Turkish. We used the data that we generated by manually translating a subset of the Penn Treebank. We exploited the already available tags in the trees to automatically identify and label chunks in their Turkish translations. We used conditional random fields (CRF) to train a model over the annotated data. We report our results on different levels of chunk resolution.Yayın Constructing a Turkish constituency parse treeBank(Springer Verlag, 2016) Yıldız, Olcay Taner; Solak, Ercan; Çandır, Şemsinur; Ehsani, Razieh; Görgün, OnurIn this paper, we describe our initial efforts for creating a Turkish constituency parse treebank by utilizing the English Penn Treebank. We employ a semiautomated approach for annotation. In our previouswork [18], the English parse trees were manually translated to Turkish. In this paper, the words are semi-automatically annotated morphologically. As a second step, a rule-based approach is used for refining the parse trees based on the morphological analyses of the words. We generated Turkish phrase structure trees for 5143 sentences from Penn Treebank that contain fewer than 15 tokens. The annotated corpus can be used in statistical natural language processing studies for developing tools such as constituency parsers and statistical machine translation systems for Turkish.Yayın Constructing a Turkish-English parallel treebank(Association for Computational Linguistics (ACL), 2014) Yıldız, Olcay Taner; Solak, Ercan; Görgün, Onur; Ehsani, RaziehIn this paper, we report our preliminary efforts in building an English-Turkish parallel treebank corpus for statistical machine translation. In the corpus, we manually generated parallel trees for about 5,000 sentences from Penn Treebank. English sentences in our set have a maximum of 15 tokens, including punctuation. We constrained the translated trees to the reordering of the children and the replacement of the leaf nodes with appropriate glosses. We also report the tools that we built and used in our tree translation task.Yayın Constructing a WordNet for Turkish using manual and automatic annotation(Assoc Computing Machinery, 2018-05) Ehsani, Razieh; Solak, Ercan; Yıldız, Olcay TanerIn this article, we summarize the methodology and the results of our 2-year-long efforts to construct a comprehensive WordNet for Turkish. In our approach, we mine a dictionary for synonym candidate pairs and manually mark the senses in which the candidates are synonymous. We marked every pair twice by different human annotators. We derive the synsets by finding the connected components of the graph whose edges are synonym senses. We also mined Turkish Wikipedia for hypernym relations among the senses. We analyzed the resulting WordNet to highlight the difficulties brought about by the dictionary construction methods of lexicographers. After splitting the unusually large synsets, we used random walk-based clustering that resulted in a Zipfian distribution of synset sizes. We compared our results to BalkaNet and automatic thesaurus construction methods using variation of information metric. Our Turkish WordNet is available online.Yayın English-Turkish parallel treebank with morphological annotations and its use in tree-based SMT(SciTePress, 2016) Görgün, Onur; Yıldız, Olcay Taner; Solak, Ercan; Ehsani, RaziehIn this paper, we report our tree based statistical translation study from English to Turkish. We describe our data generation process and report the initial results of tree-based translation under a simple model. For corpus construction, we used the Penn Treebank in the English side. We manually translated about 5K trees from English to Turkish under grammar constraints with adaptations to accommodate the agglutinative nature of Turkish morphology. We used a permutation model for subtrees together with a word to word mapping. We report BLEU scores under simple choices of inference algorithms.Yayın A FST description of noun and verb morphology of Azarbaijani Turkish(Association for Computational Linguistics (ACL), 2021) Ehsani, Razieh; Özenç, Berke; Solak, Ercan; Drewes F.We give a FST description of nominal and finite verb morphology of Azarbaijani Turkish. We use a hybrid approach where nominal inflection is expressed as a slot-based paradigm and major parts of verb inflection are expressed as optional paths on the FST. We collapse adjective and noun categories in a single nominal category as they behave similarly as far as their paradigms are concerned. Thus, we defer a more precise identification of POS to further down the NLP pipeline.Yayın KeNet: a comprehensive Turkish wordNet and its applications in text clustering(Işık Üniversitesi, 2018-06-07) Ehsani, Razieh; Yıldız, Olcay Taner; Işık Üniversitesi, Fen Bilimleri Enstitüsü, Bilgisayar Mühendisliği Doktora ProgramıIn this thesis, we summarize the methodology and the results of our e?orts to construct a comprehensive WordNet for Turkish. Most languages have access to comprehensive language resources. Traditional resources like bilingual dictionaries, monolingual dictionaries, thesauri and lexicons are developed by lexicographers. As computer processing of languages gain popularity, a new set of resources become necessary. One such resource is WordNet which was initially constructed for English language in Princeton University. A WordNet contains much of the information contained in a classic dictionary, but it also contains additional relationship information. These relations go beyond synonym relation and give information about relations such as a word being“is-a” or “is-a-part-of” another. These semantic relations are used in many text analysis tasks. A WordNet also categorizes words under common concepts. These concepts are called as synsets. As a result of all these, WordNet is a comprehensive dictionary which is readable by the computers and a useful language resource for text analysis and other research based on human language. In Turkish language, our WordNet is not the ?rst. The previous WordNet is part of BalkaNet project which is a multilingual WordNet including Turkish and Balkan languages. BalkaNet contains only common words between these languages, as such BalkaNet does not contain all Turkish words and su?ers from top-down constructing method disadvantages. BalkaNet project has not been updated or expanded in recent years. In this work we construct a Turkish WordNet from scratch using a bottom-up method. In general there are two methods for constructing WordNets. Bottomup method means that we create the WordNet from scratch while top-down approach uses other WordNets by translating them. We use Turkish Contemporary Dictionary (CDT) which is an online Turkish dictionary provided by Turkish Language Institute. Bottom-up approach has its own di?culties, since constructing a WordNet from scratch requires more resources and a lot of e?ort. In this work, we extract synonyms from CDT and ask experts to match common meanings for pairs of synonyms. We developed an application which makes annotation step easier and more accurate. We also use two groups of annotators to measure inter-annotator agreement. We used some automatic approaches to extract semantic relations from Turkish Wikipedia (Vikipedi) and Vikisözlük. We processed CDT to extract candidate synonyms and used rule based approaches to ?nd synonym sets. There is no thesaurus for Turkish, so as an application we construct a thesaurus automatically and measured accuracy with our manually constructed synsets. We named our WordNet “KeNet”. Finally, in this thesis we developed a novel approach to represent a text document in a vector space. This approach uses WordNet semantic relations. This part of thesis is an application of KeNet. We used our approach to represent text documents and implemented two di?erent clustering algorithms over these vectors. We tested our method over Turkish Wikipedia articles, domains of which are labeled by Wikipedia.Yayın MorAz: An open-source morphological analyzer for Azerbaijani Turkish(Association for Computational Linguistics (ACL), 2018) Özenç, Berke; Ehsani, Razieh; Solak, ErcanMorAz is an open-source morphological analyzer for Azerbaijani Turkish. The analyzer is available through both as a website for interactive exploration and as a RESTful web service for integration into a natural language processing pipeline. MorAz implements the morphology of Azerbaijani Turkish following a two-level approach using Helsinki finite-state transducer and wraps the analyzer with python scripts in a Django instance.Yayın Vikipedi ve Vikisözlük'ten Hypernym çıkarma(IEEE, 2017-06-27) Şaşmaz, Emre; Ehsani, Razieh; Yıldız, Olcay TanerDoğal dil işleme alanında kullanılan önemli yapılardan bir tanesi WordNet gibi büyük ölçekli sözlüklerdir. WordNet; eşanlamlı, zıt anlamlı gibi anlamsal ilişkileri de içeren kapsamlı bir sözlüktür. Bu bildiride, WordNet’in önemli bir parçası olan Hypernym-Hyponym ilişkisini çıkarmaya çalıştık. Bu amaca ulaşmak için, Vikipedi, Türkçe Sözlük ve Vikisözlük kaynaklarını kullandık. Sonlu Durum Makinelerinden ürettiğimiz kurallarla Hypernym-Hyponym ilişkilerini çıkardık.