Yazar "El Ballouti, Salah Eddine" seçeneğine göre listele
Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
Yayın Image super resolution using deep learning techniques(Işık Üniversitesi, Lisansüstü Eğitim Enstitüsü, 2024-09-02) El Ballouti, Salah Eddine; Eskil, Mustafa Taner; Işık Üniversitesi, Lisansüstü Eğitim Enstitüsü, Bilgisayar Mühendisliği Yüksek Lisans Programı; Işık University, School of Graduate Studies, Master’s Program in Computer EngineeringImage SR using Deep Learning Techniques has become a critical area of research, with significant progress in improving image quality and detail. This thesis examines and contrasts eight advanced deep learning-based SR methods: CARN, EDSR, ESPCN, RCAN, RDN, SRCNN, SRGAN, and VDSR, using the DIV2K dataset. The evaluation covers multiple aspects to offer a thorough understanding of each method's effectiveness, efficiency, and structure. Performance measurements such as PSNR and SSIM are utilized for evaluating the fidelity of super-resolved images. Computational efficiency is evaluated based on inference time and memory requirements. Training time is analyzed, taking into account the speed of convergence for training on the DIV2K dataset. Model complexity is examined, exploring architectural details such as network depth, and the integration of specialized elements like residual blocks and attention mechanisms. Additionally, the thesis explains in a clear and detailed manner the trade-offs between performance and complexity, discussing whether more complex architectures deliver significantly better results compared to simpler models and whether the computational cost justifies the improvements. Finally, a qualitative comparison is conducted to emphasize the strengths and weaknesses of each technique. Through this comprehensive analysis, this thesis offers insights into the field of deep learning-based image SR, assisting researchers and practitioners in choosing the most appropriate method for various applications.