Yazar "El-Zahar, Essam Roshdy" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Yayın Analytical approximate solutions for nonplanar Burgers equations by weighted residual method(Elsevier B.V., 2020-08-13) Demiray, Hilmi; El-Zahar, Essam RoshdyIn this work, analytical approximate progressive wave solutions for the generalized form of the nonplanar KdV-Burgers (KdV-B) and mKdV-Burgers (mKdV-B) equations are presented and the results are discussed. Motivated with the exact solutions of the planar KdV-B and mKdV-B equations, the weighted residual method is applied to propose analytical approximate solutions for the generalized form of the nonplanar KdV-B and mKdV-B equations. The structure of the KdV-B equation assumes a solitary wave type of solution, whereas the mKdV-B equation assumes a shock wave type of solution. The analytical approximate progressive wave solutions for the cylindrical(spherical) KdV-B and mKdV-B equations are obtained as some special cases and compared with numerical solutions and the results are depicted on 2D and 3D figures. The results revealed that both solutions are in good agreement. The advantage of the present method is that it is rather simple as compared to the inverse scattering method and gives the same results with the perturbative inverse scattering technique. Moreover, the present analytical solutions allow readers to carry out physical parametric studies on the behavior of the solution. In addition to the present solutions are defined overall the problem domain not only over the grid points, as well as the solution calculation has less CPU time-consuming and round-off error.Yayın Analytical solutions of cylindrical and spherical dust ion-acoustic solitary waves(Elsevier B.V., 2019-06) El-Zahar, Essam Roshdy; Demiray, HilmiIn the present work, employing the conventional reductive perturbation method to the field equations of an unmagnetized dusty plasma consisting of inertial ions, Boltzmann electrons and stationary dust particles in the nonplanar geometry we derived cylindrical(spherical) KdV and mKdV equations. Being aware of the fact that there exists no exact analytical solution for the progressive waves for such evolution equations we presented the exact analytical solution of a generalized form of such evolution equations in the planar geometry and used this solution to obtain an analytical approximate progressive wave solution to the generalized evolution equation. Then the progressive wave solutions for the cylindrical(spherical) KdV and m-KdV equations is obtained as some special cases. The analytical approximate solutions so obtained are compared with the numerical solutions of these equations. The results reveal that both solutions are in a good agreement. One advantage of present analytical approximate solution is that it allows readers to gain information, share understandings, or carry out a physical parametric study on the evolution solution behavior as well as the solution calculation has no CPU time-consuming or round off error.Yayın Cylindrical and spherical solitary waves in an electron-acoustic plasma with vortex electron distribution(Amer Inst Physics, 2018-04) Demiray, Hilmi; El-Zahar, Essam RoshdyWe consider the nonlinear propagation of electron-acoustic waves in a plasma composed of a cold electron fluid, hot electrons obeying a trapped/vortex-like distribution, and stationary ions. The basic nonlinear equations of the above described plasma are re-examined in the cylindrical (spherical) coordinates by employing the reductive perturbation technique. The modified cylindrical (spherical) KdV equation with fractional power nonlinearity is obtained as the evolution equation. Due to the nature of nonlinearity, this evolution equation cannot be reduced to the conventional KdV equation. A new family of closed form analytical approximate solution to the evolution equation and a comparison with numerical solution are presented and the results are depicted in some 2D and 3D figures. The results reveal that both solutions are in good agreement and the method can be used to obtain a new progressive wave solution for such evolution equations. Moreover, the resulting closed form analytical solution allows us to carry out a parametric study to investigate the effect of the physical parameters on the solution behavior of the modified cylindrical (spherical) KdV equation.Yayın On progressive wave solution for non-planar KDV equation in a plasma with q-nonextensive electrons and two oppositely charged ions(Işık University Press, 2020) Demiray, Hilmi; El-Zahar, Essam Roshdy; Shan, Shaukat AliIn this paper, the ion-acoustic wave is investigated in a plasma with q-nonextensive electrons and two oppositely charged ions with varying masses. These parameters are found to modify the linear dispersion relation and nonlinear solitary structures. The reductive perturbation method is employed to derive modified Korteweg-de Vries (KdV) equation. To solve the obtained governing evolution equation, the exact solution in the planar geometry is obtained and used to obtain an analytical approximate progressive wave solution for the nonplanar evolution equation. The analytical approximate solution so obtained is compared with the numerical solution of the same nonplanar evolution equation and the results are presented in 2D and 3D figures. The results revealed that both solutions are in good agreement. A parametric study is carried out to investigate the effect of different physical parameters on the nonlinear evolution solution behavior. The obtained solution allows us to study the impact of various plasma parameters on the behavior of the nonplanar ion-acoustic solitons. The suitable application of the present investigations can be found in laboratory plasmas, where oppositely charged ions and nonthermal electrons dwell.