Yazar "Harb, Mhd Raja Abou" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Yayın ANN activation function estimators for homomorphic encrypted inference(Institute of Electrical and Electronics Engineers Inc., 2025-06-13) Harb, Mhd Raja Abou; Çeliktaş, BarışHomomorphic Encryption (HE) enables secure computations on encrypted data, facilitating machine learning inference in sensitive environments such as healthcare and finance. However, efficiently handling non-linear activation functions, specifically Sigmoid and Tanh, remains a significant computational challenge for encrypted inference using Artificial Neural Networks (ANNs). This study introduces a lightweight, ANN-based estimator designed to accurately approximate activation functions under homomorphic encryption. Unlike traditional polynomial and piecewise linear approximations, the proposed ANN estimators achieve superior accuracy with lower computational overhead associated with bootstrapping or high-degree polynomial techniques. These estimators are trained on plaintext data and seamlessly integrated into encrypted inference pipelines, significantly outperforming conventional methods. Experimental evaluations demonstrate notable improvements, with ANN estimators enhancing accuracy by approximately 2% for Sigmoid and up to 73% for Tanh functions, improving F1-scores by approximately 2% for Sigmoid and up to 88% for Tanh, and markedly reducing Mean Square Error (MSE) by up to 96% compared to polynomial approximations. The ANN estimator achieves an accuracy of 97.70% and an AUC of 0.9997 when integrated into a CNN architecture on the MNIST dataset, and an accuracy of 85.25% with an AUC of 0.9459 on the UCI Heart Disease dataset during ciphertext inference. These results underscore the estimator’s practical effectiveness and computational feasibility, making it suitable for secure and efficient ANN inference in encrypted environments.Yayın Assessing ChatGPT's accuracy in dyslexia inquiry(Institute of Electrical and Electronics Engineers Inc., 2024) Eroğlu, Günet; Harb, Mhd Raja AbouDyslexia poses challenges in accessing reliable information, crucial for affected individuals and their families. Leveraging chatbot technology offers promise in this regard. This study evaluates the OpenAI Assistant's precision in addressing dyslexia-related inquiries. Three hundred questions commonly posed by parents were categorized and presented to the Assistant. Expert evaluation of responses, graded on accuracy and completeness, yielded consistently high scores (median=5). Descriptive questions scored higher (average=4.9568) than yes/no questions (average=4.8957), indicating potential response challenges. Statistical analysis highlighted the significance of question specificity in response quality. Despite occasional difficulties, the Assistant demonstrated adaptability and reliability in providing accurate dyslexia-related information.Yayın Assessing dyslexia with machine learning: a pilot study utilizing Google ML Kit(IEEE, 2023-12-19) Eroğlu, Günet; Harb, Mhd Raja AbouIn this study, we explore the application of Google ML Kit, a machine learning development kit, for dyslexia detection in the Turkish language. We collected face-tracking data from two groups: 49 dyslexic children and 22 typically developing children. Using Google ML Kit and other machine learning algorithms based on eye-tracking data, we compared their performance in dyslexia detection. Our findings reveal that Google ML Kit achieved the highest accuracy among the tested methods. This study underscores the potential of machine learning-based dyslexia detection and its practicality in academic and clinical settings.Yayın Efficient estimation of Sigmoid and Tanh activation functions for homomorphically encrypted data using Artificial Neural Networks(Institute of Electrical and Electronics Engineers Inc., 2024) Harb, Mhd Raja Abou; Çeliktaş, BarışThis paper presents a novel approach to estimating Sigmoid and Tanh activation functions using Artificial Neural Networks (ANN) optimized for homomorphic encryption. The proposed method is compared against second-degree polynomial and Piecewise Linear approximations, demonstrating a minor loss in accuracy while maintaining computational efficiency. Our results suggest that the ANN-based estimator is a viable alternative for secure machine learning models requiring privacypreserving computation.