Yazar "Koca, Mehmet Burak" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Çizge evrişim ağı kullanarak patojen-konak ağlarında protein etkileşim tahmini(IEEE, 2021-06-09) Koca, Mehmet Burak; Karadeniz, İlknur; Nourani, Esmaeil; Sevilgen, Fatih ErdoğanProteinler yaşamsal faaliyetlerin gerçekleşmesinde kritik rol oynayan biyolojik moleküllerdir. Konak canlı proteinleri ile patojen proteinleri arasındaki etkileşimler patojenkonak etkileşim (PHI) ağlarını oluşturmaktadır. Bu iki parçalı etkileşim ağları patojenin hangi yaşamsal faaliyetleri etkilediğini belirlemede ve dolayısıyla sebep olabileceği hastalıkların tespitinde büyük öneme sahiptir. Proteinler arası etkileşimlerin laboratuvar ortamında tespiti hem zaman alıcı hem de maliyetlidir. Deneysel olarak saptanabilen etkileşim sayısının kısıtlı olması ve bazı etkileşimlerin gözden kaçması hesaplamalı tahmin yöntemlerinin geliştirilmesine önayak olmaktadır. Bu çalışmada PHI ağlarında protein etkileşim tahmini yapmayı sağlayan çizge evrişim ağı (GCN) tabanlı bir yöntem sunulmaktadır. Gözetimsiz olarak eğitilen GCN modeli (GraphSAGE) topolojik bilginin yanı sıra temel öznitelik olarak amino asit dizilimlerini kullanmaktadır. Bu çalışma bildiğimiz kadarıyla PHI ağlarında GCN tabanlı etkileşim tahmini sağlayan ilk çalışmadır. Deneysel sonuçlar geliştirilen modelin kıyaslama için kullanılan PHI veri seti üzerinde yüksek performanslı algoritmalardan %10 daha iyi performans göstererek %96 oranında doğrulukla etkileşim tahmini yaptığını göstermektedir.Öğe Graph convolutional network based virus-human protein-protein interaction prediction for novel viruses(Elsevier Ltd, 2022-08-13) Koca, Mehmet Burak; Nourani, Esmaeil; Abbasoğlu, Ferda; Karadeniz, İlknur; Sevilgen, Fatih ErdoğanComputational identification of human-virus protein-protein interactions (PHIs) is a worthwhile step towards understanding infection mechanisms. Analysis of the PHI networks is important for the determination of path-ogenic diseases. Prediction of these interactions is a popular problem since experimental detection of PHIs is both time-consuming and expensive. The available methods use biological features like amino acid sequences, molecular structure, or biological activities for prediction. Recent studies show that the topological properties of proteins in protein-protein interaction (PPI) networks increase the performance of the predictions. The basic network projections, random-walk-based models, or graph neural networks are used for generating topologically enriched (hybrid) protein embeddings. In this study, we propose a three-stage machine learning pipeline that generates and uses hybrid embeddings for PHI prediction. In the first stage, numerical features are extracted from the amino acid sequences using the Doc2Vec and Byte Pair Encoding method. The amino acid embeddings are used as node features while training a modified GraphSAGE model, which is an improved version of the graph convolutional network. Lastly, the hybrid protein embeddings are used for training a binary interaction classifier model that predicts whether there is an interaction between the given two proteins or not. The proposed method is evaluated with comprehensive experiments to test its functionality and compare it with the state-of-art methods. The experimental results on the benchmark dataset prove the efficiency of the proposed model by having a 3–23% better area under curve (AUC) score than its competitors.