Yazar "Springman, Sarah Marcella" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Yayın Photogrammetric monitoring of an artificially generated landslide(Copernicus GmbH, 2011-05-08) Akça, Mehmet Devrim; Gruen, Armin W.; Askarinejad, Amin; Springman, Sarah MarcellaAccording to pre-planned schedules, a series of two artificial rainfall events were applied to a forested slope in Ruedlingen, northern Switzerland. The experiments were conducted in autumn 2008 and spring 2009, the second of which resulted in mobilising about 130 m3 of debris. Both experiments were monitored by a photogrammetric camera network in order to quantify spatial and temporal changes. A 4-camera arrangement was used for the image acquisition. The cameras operated at a data acquisition rate of circa 8 frames per second (fps). Image measurements were made using the Least Squares image matching method, which was implemented in an in-house developed software package (BAAP) to compute 3D coordinates of the target points. The surface deformation was quantified by tracking the small (ping-pong and tennis) balls pegged into the ground. The average 3D point-positioning precision of ±1.6 cm was achieved in the first experiment and ±1.8 cm in the second experiment.Yayın Precursors of instability in a natural slope due to rainfall: a full-scale experiment(Springer Heidelberg, 2018-09) Askarinejad, Amin; Akça, Mehmet Devrim; Springman, Sarah MarcellaA full-scale landslide-triggering experiment was conducted on a natural sandy slope subjected to an artificial rainfall event, which resulted in mobilisation of 130m(3) of soil mass. Novel slope deformation sensors (SDSs) were applied to monitor the subsurface pre-failure movements and the precursors of the artificially triggered landslide. These fully automated sensors are more flexible than the conventional inclinometers by several orders of magnitude and therefore are able to detect fine movements (<1mm) of the soil mass reliably. Data from high-frequency measurements of the external bending work, indicating the transmitted energy from the surrounding soil to these sensors, pore water pressure at various depths, horizontal soil pressure and advanced surface monitoring techniques, contributed to an integrated analysis of the processes that led to triggering of the landslide. Precursors of movements were detected before the failure using the horizontal earth pressure measurements, as well as surface and subsurface movement records. The measurements showed accelerating increases of the horizontal earth pressure in the compression zone of the unstable area and external bending work applied to the slope deformation sensors. These data are compared to the pore water pressure and volumetric water content changes leading to failure.