Yazar "Zura, Marijan" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Yayın An automatic calibration procedure of driving behaviour parameters in the presence of high bus volume(Faculty of Transport and Traffic Engineering, 2019-11) Dadashzadeh, Nima; Ergün, Murat; Kesten, Ali Sercan; Zura, MarijanMost of the microscopic traffic simulation programs used today incorporate car-following and lane-change models to simulate driving behaviour across a given area. The main goal of this study has been to develop an automatic calibration process for the parameters of driving behaviour models using metaheuristic algorithms. Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and a combination of GA and PSO (i.e. hybrid GAPSO and hybrid PSOGA) were used during the optimization stage. In order to verify our proposed methodology, a suitable study area with high bus volume on-ramp from the 0-1 Highway in Istanbul has been modelled in VISSIM. Traffic data have been gathered through detectors. The calibration procedure has been coded using MATLAB and implemented via the VISSIM-MATLAB COM interface. Using the proposed methodology, the results of the calibrated model showed that hybrid GAPSO and hybrid PSOGA techniques outperformed the GA-only and PSO-only techniques during the calibration process. Thus, both are recommended for use in the calibration of microsimulation traffic models, rather than GA-only and PSO-only techniques.Yayın Improving the calibration time of traffic simulation models using parallel computing technique(Institute of Electrical and Electronics Engineers Inc., 2019-06) Dadashzadeh, Nima; Ergün, Murat; Kesten, Ali Sercan; Zura, MarijanThe calibration procedure for traffic simulation models can be a very time-consuming process in the case of a large-scale and complex network. In the application of Evolutionary Algorithms (EA) such as Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) for calibration of traffic simulation models, objective function evaluation is the most time-consuming step in such calibration problems, because EA has to run a traffic simulation and calculate its corresponding objective function value once for each set of parameters. The main contribution of this study has been to develop a quick calibration procedure for the parameters of driving behavior models using EA and parallel computing techniques (PCTs). The proposed method was coded and implemented in a microscopic traffic simulation software. Two scenarios with/without PCT were analyzed using the developed methodology. The results of scenario analysis show that using an integrated calibration and PCT can reduce the total computational time of the optimization process significantly-in our experiments by 50%-and improve the optimization algorithm's performance in a complex optimization problem. The proposed method is useful for overcoming the limitation of computational time of the existing calibration methods and can be applied to various EAs and traffic simulation software.