Makale Koleksiyonu | Elektrik-Elektronik Mühendisliği Bölümü / Department of Electrical-Electronics Engineering

Bu koleksiyon için kalıcı URI

Güncel Gönderiler

Listeleniyor 1 - 12 / 12
  • Öğe
    Imaging of rough surfaces by RTM method
    (IEEE, 2024) Sefer, Ahmet; Yapar, Ali; Yelkenci, Tanju
    An electromagnetic imaging framework is implemented utilizing a single frequency reverse time migration (RTM) technique to accurately reconstruct inaccessible two-dimensional (2D) rough surface profiles from the knowledge of scattered field data. The unknown surface profile, which is expressed as a 1D height function, is either perfectly electric conducting (PEC) or an interface between two penetrable media. For both cases, it is assumed that the surface is illuminated by a number of line sources located in the upper medium. The scattered fields, which should be collected by real measurements in practical applications, are obtained synthetically by solving the associated direct scattering problem through the surface integral equations. RTM is subsequently applied to generate a cross-correlation imaging functional which is evaluated numerically and provides a 2D image of the region of interest. A high correlation is observed by the functional in the regions where the transitions between two media occur. Hence, it results in the acquisition of the unknown surface profile at the sites where the functional attains its highest values. The efficiency of the proposed method is comprehensively tested by numerical examples covering various types of scattering scenarios.
  • Öğe
    Engineering four-qubit fuel states for protecting quantum thermalization machine from decoherence
    (Multidisciplinary Digital Publishing Institute (MDPI), 2024-01-10) Özaydın, Fatih; Sarkar, Ramita; Bayrakçı, Veysel; Bayındır, Cihan; Altıntaş, Azmi Ali; Müstecaplıoğlu, Özgür E.
    Decoherence is a major issue in quantum information processing, degrading the performance of tasks or even precluding them. Quantum error-correcting codes, creating decoherence-free subspaces, and the quantum Zeno effect are among the major means for protecting quantum systems from decoherence. Increasing the number of qubits of a quantum system to be utilized in a quantum information task as a resource expands the quantum state space. This creates the opportunity to engineer the quantum state of the system in a way that improves the performance of the task and even to protect the system against decoherence. Here, we consider a quantum thermalization machine and four-qubit atomic states as its resource. Taking into account the realistic conditions such as cavity loss and atomic decoherence due to ambient temperature, we design a quantum state for the atomic resource as a classical mixture of Dicke and W states. We show that using the mixture probability as the control parameter, the negative effects of the inevitable decoherence on the machine performance almost vanish. Our work paves the way for optimizing resource systems consisting of a higher number of atoms.
  • Öğe
    A review of recent innovations in remote health monitoring
    (Multidisciplinary Digital Publishing Institute (MDPI), 2023-12) Dalloul, Ahmed Hany; Miramirkhani, Farshad; Kouhalvandi, Lida
    The development of remote health monitoring systems has focused on enhancing healthcare services’ efficiency and quality, particularly in chronic disease management and elderly care. These systems employ a range of sensors and wearable devices to track patients’ health status and offer real-time feedback to healthcare providers. This facilitates prompt interventions and reduces hospitalization rates. The aim of this study is to explore the latest developments in the realm of remote health monitoring systems. In this paper, we explore a wide range of domains, spanning antenna designs, small implantable antennas, on-body wearable solutions, and adaptable detection and imaging systems. Our research also delves into the methodological approaches used in monitoring systems, including the analysis of channel characteristics, advancements in wireless capsule endoscopy, and insightful investigations into sensing and imaging techniques. These advancements hold the potential to improve the accuracy and efficiency of monitoring, ultimately contributing to enhanced health outcomes for patients.
  • Öğe
    IEEE 802.11BB reference channel models for light communications
    (IEEE, 2023-12-01) Miramirkhani, Farshad; Baykaş, Tunçer; Elamassie, Mohammed; Uysal, Murat
    Increasing industrial attention to visible light communications (VLC) technology led the IEEE 802.11 to establish the task group 802.11bb 'Light Communications' (LC) for the development of a VLC standard. As a part of the standard development process, the development of realistic channel models according to possible use cases is of critical importance for physical layer system design. This article presents the reference channel models for the mandatory usage models adopted by IEEE 802.11bb for the evaluation of system proposals. The use cases include industrial, medical, enterprise, and residential scenarios. Channel impulse responses and corresponding frequency responses are obtained for each use case using a ray tracing approach based on realistic specifications for transmitters and receivers, and optical characterization of the environment.
  • Öğe
    Superactivating bound entanglement in quantum networks via quantum Zeno dynamics and a novel algorithm for optimized Zeno evolution
    (MDPI, 2023-01) Özaydın, Fatih; Bayrakçı, Veysel; Altıntaş, Azmi Ali; Bayındır, Cihan
    An arbitrary amount of entanglement shared among nodes of a quantum network might be nondistillable if the nodes lack the information on the entangled Bell pairs they share. Making such a system distillable, which is called the superactivation of bound entanglement (BE), was shown to be possible through systematic quantum teleportation between the nodes, requiring the implementation of controlled-gates scaling with the number of nodes. In this work, we show in two scenarios that the superactivation of BE is possible if nodes implement the proposed local quantum Zeno strategies based on only single qubit rotations and simple threshold measurements. In the first scenario we consider, we obtain a two-qubit distillable entanglement system as in the original superactivation proposal. In the second scenario, we show that superactivation can be achieved among the entire network of eight qubits in five nodes. In addition to obtaining all-particle distillable entanglement, the overall entanglement of the system in terms of the sum of bipartite cuts is increased. We also design a general algorithm with variable greediness for optimizing the QZD evolution tasks. Implementing our algorithm for the second scenario, we show that a significant improvement can be obtained by driving the initial BE system into a maximally entangled state. We believe our work contributes to quantum technologies from both practical and fundamental perspectives bridging nonlocality, bound entanglement and the quantum Zeno dynamics among a quantum network.
  • Öğe
    Metamutator based universal, single input multi output current mode filter
    (John Wiley and Sons Ltd, 2023-03) Göknar, İzzet Cem; Minayi, Elham
    The introduction of Add - Differentiate IC, AD-IC, a new integrated circuit, into schemes for realizing single input multiple output current mode filters is the motivation behind this paper. In the circuit structure of this filter with only one active device with a minimal number of transistors and five passive components are being used. Non ideal effects of the design are investigated and simulation results of the application, using TSMC 0.25 ?m process parameters with ±1.25 V power supply voltage and the bias (Formula presented.) as 0.8 V resulting in 0.99 mW power dissipation for the entire filter, are also presented to confirm the theoretical analysis. With this new design technique, the tunabilities of the angular frequency ((Formula presented.)) and quality factor ((Formula presented.)) can be performed independently.
  • Öğe
    Inverse scattering by perfectly electric conducting (PEC) rough surfaces: an equivalent model with line sources
    (Institute of Electrical and Electronics Engineers Inc., 2022) Sefer, Ahmet; Yapar, Ali
    This paper presents a new method for the reconstruction of the perfectly electric conducting (PEC) rough surface profiles by utilizing electromagnetic waves. The inaccessible rough surface is illuminated by a tapered plane electromagnetic wave and the scattered field data are measured on a certain number of points above the surface under test. The method for the inverse electromagnetic imaging problem is based on a special representation of the scattered field in terms of a finite number of fictitious discrete line sources located along a plane below the rough surface. The current densities of these fictitious sources are obtained through the regularized solution of an ill-posed problem. Then, it is shown that the image of the rough surface can be directly retrieved by seeking the points in the space where the tangential component of the total electric field vanishes. Alternatively, a much more rigorous iterative method based on a regularized Newton algorithm is also presented. A comprehensive numerical analysis is provided to demonstrate the feasibility of the presented approach. In this context, the quantitative successes of both approaches are interpreted by considering a very sensitive ?2-norm based error function between the actual and the reconstructed surface profiles. Regarding different scattering scenarios taken into account, the error values obtained for satisfactory reconstructions are generally in the range of 10% - 30% for both methods. It is also shown that the presented algorithms are capable of reconstructing the rough surfaces which oscillate for every ? horizontally and have a peak to peak variation 0.5? at most.
  • Öğe
    Prisoners’ dilemma in a spatially separated system based on spin–photon interactions
    (MDPI, 2022-09) Altıntaş, Azmi Ali; Özaydın, Fatih; Bayındır, Cihan; Bayrakçı, Veysel
    Having access to ideal quantum mechanical resources, the prisoners’ dilemma can be ceased. Here, we propose a distributed quantum circuit to allow spatially separated prisoners to play the prisoners’ dilemma game. Decomposing the circuit into controlled-Z and single-qubit gates only, we design a corresponding spin–photon-interaction-based physical setup within the reach of current technology. In our setup, spins are considered to be the players’ logical qubits, which can be realized via nitrogen-vacancy centers in diamond or quantum dots coupled to optical cavities, and the game is played via a flying photon realizing logic operations by interacting with the spatially separated optical cavities to which the spin qubits are coupled. We also analyze the effect of the imperfect realization of two-qubit gates on the game, and discuss the revival of the dilemma and the emergence of new Nash equilibria.
  • Öğe
    Optimized fractional-order Butterworth filter design in complex F-plane
    (Springer Nature, 2022-10) Mahata, Shibendu; Herencsar, Norbert; Kubanek, David; Göknar, İzzet Cem
    This paper introduces a new technique to optimally design the fractional-order Butterworth low-pass filter in the complex F-plane. Design stability is assured by incorporating the critical phase angle as an inequality constraint. The poles of the proposed approximants reside on the unit circle in the stable region of the F-plane. The improved accuracy of the suggested scheme as compared to the recently published literature is demonstrated. A mixed-integer genetic algorithm which considers the parallel combinations of resistors and capacitors for the Valsa network is used to optimize the frequency responses of the fractional-order capacitor emulators as part of the experimental verification using the Sallen–Key filter topology. The total harmonic distortion and spurious-free dynamic range of the practical 1.5th-order Butterwoth filter are measured as 0.13% and 62.18 dBc, respectively; the maximum and mean absolute relative magnitude errors are 0.03929 and 0.02051, respectively.
  • Öğe
    Quantum Zeno repeaters
    (Nature Research, 2022-09-12) Bayrakçı, Veysel; Özaydın, Fatih
    Quantum repeaters pave the way for long-distance quantum communications and quantum Internet, and the idea of quantum repeaters is based on entanglement swapping which requires the implementation of controlled quantum gates. Frequently measuring a quantum system affects its dynamics which is known as the quantum Zeno effect (QZE). Beyond slowing down its evolution, QZE can be used to control the dynamics of a quantum system by introducing a carefully designed set of operations between measurements. Here, we propose an entanglement swapping protocol based on QZE, which achieves almost unit fidelity. Implementation of our protocol requires only simple frequent threshold measurements and single particle rotations. We extend the proposed entanglement swapping protocol to a series of repeater stations for constructing quantum Zeno repeaters which also achieve almost unit fidelity regardless of the number of repeaters. Requiring no controlled gates, our proposal reduces the quantum circuit complexity of quantum repeaters. Our work has potential to contribute to long distance quantum communications and quantum computing via quantum Zeno effect.
  • Öğe
    A new novel synchronization index of brain networks in hyperbolic EEG dynamics
    (Sakarya Üniversitesi Fen Bilimleri Enstitüsü, 2022-06) Demirer, Rüştü Murat
    The functional connectivity ofbrain connectivity changes its pattern over time i.e. dynamics, even in the resting state with an infinite number of degrees of freedom with local couplings. Recently, quantifying the level of synchrony has received considerable attention. We hypothesized that time-varying instantaneous phase synchronization over local couplings are defined in hyperbolic space and different brain regions can identify failures, flexibility, and stability in network dynamics.Our goal is to understand the phase synchronization changes of the beta-gamma band, and in addition, to investigate Shannon entropy based on phase synchronization stability. Whole EEG dynamics from local phase synchronizations was used to detect treatment resistance from both hemispheres in OCD patients. Temporal filtering and Hilbert transforms were performed to infer beta-gamma band phase difference activity from the EEG brain dynamics.Then, the response beta-gamma band phase stability was quantified using a new phase synchronization index (PSI). Results indicated significantly changed phase synchronization of the response and non-response to treatment, patients in OCD patients in F7 electrode. Greater phase fluctuations of beta-gamma synchronizations in treatment resistance OCD is claiming phase deficiencies within neural populations.This study first provides experimental and theoretical support for characterizing cycle structure depends on the non-Euclidian dynamics of neural phase synchrony caused by disturbances of underlying neurotransmitter systems, as reflected in different normal and disease states.
  • Öğe
    Semantic communications in networked systems: a data significance perspective
    (IEEE, 2022-07-01) Uysal, Elif; Kaya, Onur; Ephremides, Anthony; Gross, James; Codreanu, Marian; Popovski, Petar; Assaad, Mohamad; Liva, Gianluigi; Munari, Andrea; Soret, Beatriz; Soleymani, Touraj; Johansson, Karl Henrik
    We present our vision for a departure from the established way of architecting and assessing communication networks, by incorporating the semantics of information for communications and control in networked systems. We define semantics of information, not as the meaning of the messages, but as their significance, possibly within a real time constraint, relative to the purpose of the data exchange. We argue that research efforts must focus on laying the theoretical foundations of a redesign of the entire process of information generation, transmission and usage in unison by developing: advanced semantic metrics for communications and control systems; an optimal sampling theory combining signal sparsity and semantics, for real-time prediction, reconstruction and control under communication constraints and delays; semantic compressed sensing techniques for decision making and inference directly in the compressed domain; semantic-aware data generation, channel coding, feedback, multiple and random access schemes that reduce the volume of data and the energy consumption, increasing the number of supportable devices. This paradigm shift targets jointly optimal information gathering, information dissemination, and decision making policies in networked systems.