Assessing dyslexia with machine learning: a pilot study utilizing Google ML Kit
dc.authorid | 0000-0001-8382-8417 | |
dc.contributor.author | Eroğlu, Günet | en_US |
dc.contributor.author | Harb, Mhd Raja Abou | en_US |
dc.date.accessioned | 2024-01-29T06:25:05Z | |
dc.date.available | 2024-01-29T06:25:05Z | |
dc.date.issued | 2023-12-19 | |
dc.department | Işık Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Makine Mühendisliği Bölümü | en_US |
dc.department | Işık University, Faculty of Engineering and Natural Sciences, Department of Mechanical Engineering | en_US |
dc.description.abstract | In this study, we explore the application of Google ML Kit, a machine learning development kit, for dyslexia detection in the Turkish language. We collected face-tracking data from two groups: 49 dyslexic children and 22 typically developing children. Using Google ML Kit and other machine learning algorithms based on eye-tracking data, we compared their performance in dyslexia detection. Our findings reveal that Google ML Kit achieved the highest accuracy among the tested methods. This study underscores the potential of machine learning-based dyslexia detection and its practicality in academic and clinical settings. | en_US |
dc.description.version | Publisher's Version | en_US |
dc.identifier.citation | Eroğlu, G. & Harb, M. R. A. (2023). Assessing dyslexia with machine learning: a pilot study utilizing Google ML Kit. Paper presented at the 2023 Medical Technologies Congress (TIPTEKNO), 1-4. doi:10.1109/TIPTEKNO59875.2023.10359236 | en_US |
dc.identifier.doi | 10.1109/TIPTEKNO59875.2023.10359236 | |
dc.identifier.endpage | 4 | |
dc.identifier.isbn | 9798350328967 | |
dc.identifier.isbn | 9798350328974 | |
dc.identifier.issn | 2687-7783 | |
dc.identifier.issn | 2687-7775 | |
dc.identifier.scopus | 2-s2.0-85182734971 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.startpage | 1 | |
dc.identifier.uri | https://hdl.handle.net/11729/5889 | |
dc.identifier.uri | http://dx.doi.org/10.1109/TIPTEKNO59875.2023.10359236 | |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Harb, Mhd Raja Abou | en_US |
dc.language.iso | en | en_US |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | 2023 Medical Technologies Congress (TIPTEKNO) | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - İdari Personel ve Öğrenci | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Dyslexia | en_US |
dc.subject | Dyslexia detection | en_US |
dc.subject | Eye movement data | en_US |
dc.subject | Eyezenith | en_US |
dc.subject | Face-tracking data | en_US |
dc.subject | Google ML Kit | en_US |
dc.subject | Supervised machine learning | en_US |
dc.subject | Eye movements | en_US |
dc.subject | Face recognition | en_US |
dc.subject | Learning algorithms | en_US |
dc.subject | Learning systems | en_US |
dc.subject | Supervised learning | en_US |
dc.subject | Dyslexium | en_US |
dc.subject | Dyslexium detection | en_US |
dc.subject | Eye movement datum | en_US |
dc.subject | Face tracking | en_US |
dc.subject | Google+ | en_US |
dc.subject | Supervised machine learning | en_US |
dc.subject | Tracking data | en_US |
dc.subject | Eye tracking | en_US |
dc.title | Assessing dyslexia with machine learning: a pilot study utilizing Google ML Kit | en_US |
dc.type | Conference Object | en_US |
dspace.entity.type | Publication |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- İsim:
- Assessing_dyslexia_with_machine_learning_a_pilot_study_utilizing_Google_ML_Kit.pdf
- Boyut:
- 321.23 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Publisher's Version
Lisans paketi
1 - 1 / 1
Küçük Resim Yok
- İsim:
- license.txt
- Boyut:
- 1.44 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: