Efficient estimation of Sigmoid and Tanh activation functions for homomorphically encrypted data using Artificial Neural Networks
dc.authorid | 0009-0001-4214-8738 | |
dc.authorid | 0000-0003-2865-6370 | |
dc.contributor.author | Harb, Mhd Raja Abou | en_US |
dc.contributor.author | Çeliktaş, Barış | en_US |
dc.date.accessioned | 2025-08-18T06:51:44Z | |
dc.date.available | 2025-08-18T06:51:44Z | |
dc.date.issued | 2024 | |
dc.department | Işık Üniversitesi, Lisansüstü Eğitim Enstitüsü, Bilgisayar Mühendisliği Yüksek Lisans Programı | en_US |
dc.department | Işık University, School of Graduate Studies, Master’s Program in Computer Engineering | en_US |
dc.department | Işık Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.department | Işık University, Faculty of Engineering and Natural Sciences, Department of Computer Engineering | en_US |
dc.description.abstract | This paper presents a novel approach to estimating Sigmoid and Tanh activation functions using Artificial Neural Networks (ANN) optimized for homomorphic encryption. The proposed method is compared against second-degree polynomial and Piecewise Linear approximations, demonstrating a minor loss in accuracy while maintaining computational efficiency. Our results suggest that the ANN-based estimator is a viable alternative for secure machine learning models requiring privacypreserving computation. | en_US |
dc.description.version | Publisher's Version | en_US |
dc.identifier.citation | Harb, M. R. A. & Çeliktaş, B. (2024). Efficient estimation of Sigmoid and Tanh activation functions for homomorphically encrypted data using Artificial Neural Networks. Paper presented at the 8th International Symposium on Innovative Approaches in Smart Technologies, ISAS 2024 - Proceedings. doi:10.1109/ISAS64331.2024.10845450 | en_US |
dc.identifier.doi | 10.1109/ISAS64331.2024.10845450 | |
dc.identifier.isbn | 9798331540104 | |
dc.identifier.scopus | 2-s2.0-85218035349 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.uri | https://hdl.handle.net/11729/6619 | |
dc.identifier.uri | https://doi.org/10.1109/ISAS64331.2024.10845450 | |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Harb, Mhd Raja Abou | en_US |
dc.institutionauthor | Çeliktaş, Barış | en_US |
dc.institutionauthorid | 0009-0001-4214-8738 | |
dc.institutionauthorid | 0000-0003-2865-6370 | |
dc.language.iso | en | en_US |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | 8th International Symposium on Innovative Approaches in Smart Technologies, ISAS 2024 - Proceedings | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Öğrenci | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Activation function estimation | en_US |
dc.subject | Artificial Neural Networks (ANN) | en_US |
dc.subject | Homomorphic encryption | en_US |
dc.subject | Privacy-preserving machine learning | en_US |
dc.subject | Activation functions | en_US |
dc.subject | Function estimation | en_US |
dc.subject | Ho-momorphic encryptions | en_US |
dc.subject | Homomorphic-encryptions | en_US |
dc.subject | Machine-learning | en_US |
dc.subject | Neural-networks | en_US |
dc.subject | Privacy preserving | en_US |
dc.subject | Differential privacy | en_US |
dc.title | Efficient estimation of Sigmoid and Tanh activation functions for homomorphically encrypted data using Artificial Neural Networks | en_US |
dc.type | Conference Object | en_US |
dspace.entity.type | Publication | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- İsim:
- Efficient_Estimation_of_Sigmoid_and_Tanh_Activation_Functions_for_Homomorphically_Encrypted_Data_Using_Artificial_Neural_Networks.pdf
- Boyut:
- 230.15 KB
- Biçim:
- Adobe Portable Document Format
Lisans paketi
1 - 1 / 1
Küçük Resim Yok
- İsim:
- license.txt
- Boyut:
- 1.17 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: