Efficient privacy-aware record integration

dc.authorid0000-0001-9795-9063
dc.authorid0000-0002-3149-1565
dc.authorid0000-0003-3040-5175
dc.contributor.authorKuzu, Mehmeten_US
dc.contributor.authorKantarcıoğlu, Muraten_US
dc.contributor.authorİnan, Alien_US
dc.contributor.authorBertino, Elisaen_US
dc.contributor.authorDurham, Elizabeth Ashleyen_US
dc.contributor.authorMalin, Bradley A.en_US
dc.date.accessioned2019-08-31T12:10:23Z
dc.date.accessioned2019-08-05T16:04:57Z
dc.date.available2019-08-31T12:10:23Z
dc.date.available2019-08-05T16:04:57Z
dc.date.issued2013
dc.departmentIşık Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.departmentIşık University, Faculty of Engineering, Department of Computer Engineeringen_US
dc.description.abstractThe integration of information dispersed among multiple repositories is a crucial step for accurate data analysis in various domains. In support of this goal, it is critical to devise procedures for identifying similar records across distinct data sources. At the same time, to adhere to privacy regulations and policies, such procedures should protect the confidentiality of the individuals to whom the information corresponds. Various private record linkage (PRL) protocols have been proposed to achieve this goal, involving secure multi-party computation (SMC) and similarity preserving data transformation techniques. SMC methods provide secure and accurate solutions to the PRL problem, but are prohibitively expensive in practice, mainly due to excessive computational requirements. Data transformation techniques offer more practical solutions, but incur the cost of information leakage and false matches. In this paper, we introduce a novel model for practical PRL, which 1) affords controlled and limited information leakage, 2) avoids false matches resulting from data transformation. Initially, we partition the data sources into blocks to eliminate comparisons for records that are unlikely to match. Then, to identify matches, we apply an efficient SMC technique between the candidate record pairs. To enable efficiency and privacy, our model leaks a controlled amount of obfuscated data prior to the secure computations. Applied obfuscation relies on differential privacy which provides strong privacy guarantees against adversaries with arbitrary background knowledge. In addition, we illustrate the practical nature of our approach through an empirical analysis with data derived from public voter records.en_US
dc.description.versionPublisher's Versionen_US
dc.identifier.citationKuzu, M., Kantarcıoğlu, M., İnan, A., Bertino, E., Durham, E. & Malin, B. (2013). Efficient privacy-aware record integration. Paper presented at the ACM International Conference Proceeding Series, 167-178. doi:10.1145/2452376.2452398en_US
dc.identifier.doi10.1145/2452376.2452398
dc.identifier.endpage178
dc.identifier.isbn9781450315975
dc.identifier.pmid24500681
dc.identifier.scopus2-s2.0-84876805120
dc.identifier.scopusqualityN/A
dc.identifier.startpage167
dc.identifier.urihttps://hdl.handle.net/11729/1921
dc.identifier.urihttps://dx.doi.org/10.1145/2452376.2452398
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakPubMeden_US
dc.institutionauthorİnan, Alien_US
dc.institutionauthorid0000-0002-3149-1565
dc.language.isoenen_US
dc.peerreviewedYesen_US
dc.publicationstatusPublisheden_US
dc.relation.ispartofACM International Conference Proceeding Seriesen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAlgorithmsen_US
dc.subjectBack-ground knowledgeen_US
dc.subjectComputational requirementsen_US
dc.subjectData privacyen_US
dc.subjectData integrationen_US
dc.subjectDatabase systemsen_US
dc.subjectDifferential privaciesen_US
dc.subjectDifferential privacyen_US
dc.subjectInformation leakageen_US
dc.subjectMetadataen_US
dc.subjectPrivacyen_US
dc.subjectPrivacy-preserving recorden_US
dc.subjectRecord linkageen_US
dc.subjectSecure multi-party computationen_US
dc.subjectSecurityen_US
dc.subjectSimilarity preservingen_US
dc.titleEfficient privacy-aware record integrationen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
1921.pdf
Boyut:
427.03 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Publisher's Version