Univariate margin tree
dc.authorid | 0000-0001-5838-4615 | |
dc.contributor.author | Yıldız, Olcay Taner | en_US |
dc.date.accessioned | 2019-08-31T12:10:23Z | |
dc.date.accessioned | 2019-08-05T16:04:59Z | |
dc.date.available | 2019-08-31T12:10:23Z | |
dc.date.available | 2019-08-05T16:04:59Z | |
dc.date.issued | 2010 | |
dc.department | Işık Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.department | Işık University, Faculty of Engineering, Department of Computer Engineering | en_US |
dc.description.abstract | In many pattern recognition applications, first decision trees are used due to their simplicity and easily interpretable nature. In this paper, we propose a new decision tree learning algorithm called univariate margin tree, where for each continuous attribute, the best split is found using convex optimization. Our simulation results on 47 datasets show that the novel margin tree classifier performs at least as good as C4.5 and LDT with a similar time complexity. For two class datasets it generates smaller trees than C4.5 and LDT without sacrificing from accuracy, and generates significantly more accurate trees than C4.5 and LDT for multiclass datasets with one-vs-rest methodology. | en_US |
dc.description.version | Publisher's Version | en_US |
dc.identifier.citation | Yıldız, O. T. (2010). Univariate margin tree. Paper presented at the Lecture Notes in Electrical Engineering, 62, 11-16. doi:10.1007/978-90-481-9794-1_3 | en_US |
dc.identifier.doi | 10.1007/978-90-481-9794-1_3 | |
dc.identifier.endpage | 16 | |
dc.identifier.isbn | 9789048197934 | |
dc.identifier.isbn | 9048197937 | |
dc.identifier.issn | 1876-1100 | |
dc.identifier.scopus | 2-s2.0-78651566091 | |
dc.identifier.scopusquality | Q4 | |
dc.identifier.startpage | 11 | |
dc.identifier.uri | https://hdl.handle.net/11729/1960 | |
dc.identifier.uri | https://dx.doi.org/10.1007/978-90-481-9794-1_3 | |
dc.identifier.volume | 62 | |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Yıldız, Olcay Taner | en_US |
dc.institutionauthorid | 0000-0001-5838-4615 | |
dc.language.iso | en | en_US |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Lecture Notes in Electrical Engineering | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Continuous attribute | en_US |
dc.subject | Convex optimization | en_US |
dc.subject | Data sets | en_US |
dc.subject | Decision trees | en_US |
dc.subject | Decision tree learning algorithm | en_US |
dc.subject | Information science | en_US |
dc.subject | Learning algorithms | en_US |
dc.subject | Multi-class | en_US |
dc.subject | Neural networks | en_US |
dc.subject | Pattern recognition | en_US |
dc.subject | Simulation result | en_US |
dc.subject | Support vector machines | en_US |
dc.subject | Time complexity | en_US |
dc.subject | Tree classifiers | en_US |
dc.subject | Univariate | en_US |
dc.title | Univariate margin tree | en_US |
dc.type | Conference Object | en_US |
dspace.entity.type | Publication |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- İsim:
- 1960.pdf
- Boyut:
- 586.99 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Publisher's Version