AnlamVer: Semantic model evaluation dataset for Turkish - word similarity and relatedness

Küçük Resim Yok

Tarih

2018-08-26

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Association for Computational Linguistics (ACL)

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In this paper, we present AnlamVer, which is a semantic model evaluation dataset for Turkish designed to evaluate word similarity and word relatedness tasks while discriminating those two relations from each other. Our dataset consists of 500 word-pairs annotated by 12 human subjects, and each pair has two distinct scores for similarity and relatedness. Word-pairs are selected to enable the evaluation of distributional semantic models by multiple attributes of words and word-pair relations such as frequency, morphology, concreteness and relation types (e.g., synonymy, antonymy). Our aim is to provide insights to semantic model researchers by evaluating models in multiple attributes. We balance dataset word-pairs by their frequencies to evaluate the robustness of semantic models concerning out-of-vocabulary and rare words problems, which are caused by the rich derivational and inflectional morphology of the Turkish language.

Açıklama

Anahtar Kelimeler

Computational linguistics, Semantics, Distributional semantics, Evaluating models, Human subjects, Model evaluation, Multiple attributes, Semantic modelling, Turkishs, Word problem, Word similarity, Word-pairs, Morphology

Kaynak

WoS Q Değeri

Scopus Q Değeri

N/A

Cilt

Sayı

Künye

Ercan, G. & Yıldız, O. T. (2018). AnlamVer: Semantic model evaluation dataset for Turkish - word similarity and relatedness. Paper presented at the COLING 2018 - 27th International Conference on Computational Linguistics, Proceedings, 3819 - 3836.