A sequential Monte Carlo method for blind phase noise estimation and data detection

dc.authorid0000-0002-3591-6567
dc.authorid0000-0001-7328-6626
dc.contributor.authorPanayırcı, Erdalen_US
dc.contributor.authorÇırpan, Hakan Alien_US
dc.contributor.authorMoeneclaey, Marcen_US
dc.date.accessioned2019-08-31T12:10:23Z
dc.date.accessioned2019-08-05T16:05:04Z
dc.date.available2019-08-31T12:10:23Z
dc.date.available2019-08-05T16:05:04Z
dc.date.issued2005
dc.departmentIşık Üniversitesi, Mühendislik Fakültesi, Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.departmentIşık University, Faculty of Engineering, Department of Electrical-Electronics Engineeringen_US
dc.description.abstractIn this paper, a computationally efficient algorithm is presented for blind phase noise estimation and data detection jointly, based on a sequential Monte Carlo method. The basic idea is to treat the transmitted symbols as " missing data" and draw samples sequentially of them based on the observed signal samples up to time t. This way, the Bayesian estimates of the phase noise and the incoming data are obtained through these samples, sequentially drawn, together with their importance weights. The proposed receiver structure is seen to be ideally suited for high-speed parallel implementation using VLSI technology.en_US
dc.description.versionPublisher's Versionen_US
dc.identifier.citationPanayırcı, E., Çırpan, H. A. & Moeneclaey, M. (2005). A sequential monte carlo method for blind phase noise estimation and data detection. Paper presented at the 13th European Signal Processing Conference, EUSIPCO 2005, 1942-1946.en_US
dc.identifier.endpage1946
dc.identifier.isbn1604238216
dc.identifier.isbn9781604238211
dc.identifier.scopus2-s2.0-84863676265
dc.identifier.scopusqualityN/A
dc.identifier.startpage1942
dc.identifier.urihttps://hdl.handle.net/11729/2020
dc.indekslendigikaynakScopusen_US
dc.institutionauthorPanayırcı, Erdalen_US
dc.institutionauthorid0000-0001-7328-6626
dc.language.isoenen_US
dc.peerreviewedYesen_US
dc.publicationstatusPublisheden_US
dc.publisherIEEEen_US
dc.relation.ispartof13th European Signal Processing Conference, EUSIPCO 2005en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHigh-speed parallel implementationen_US
dc.subjectBayesian estimationen_US
dc.subjectSignal sample observationen_US
dc.subjectMissing dataen_US
dc.subjectTransmitted symbolsen_US
dc.subjectComputationally efficient algorithmen_US
dc.subjectData detectionen_US
dc.subjectBlind phase noise estimationen_US
dc.subjectSequential Monte Carlo methoden_US
dc.subjectSequential estimationen_US
dc.subjectObject detectionen_US
dc.subjectJointsen_US
dc.subjectBayes methodsen_US
dc.subjectBit error rateen_US
dc.subjectEstimationen_US
dc.subjectPhase noiseen_US
dc.subjectSignal processingen_US
dc.subjectMonte Carlo methodsen_US
dc.subjectBayesian networksen_US
dc.subjectAlgorithmsen_US
dc.subjectVLSI technologyen_US
dc.subjectSignal samplesen_US
dc.subjectSequential Monte Carlo methodsen_US
dc.subjectReceiver structureen_US
dc.subjectParallel implementationsen_US
dc.subjectNoise estimationen_US
dc.subjectMissing dataen_US
dc.subjectImportance weightsen_US
dc.subjectHigh-speeden_US
dc.subjectData detectionen_US
dc.subjectComputationally efficienten_US
dc.subjectBayesian estimateen_US
dc.subjectFilter CKFen_US
dc.subjectTarget trackingen_US
dc.subjectKalman filtersen_US
dc.titleA sequential Monte Carlo method for blind phase noise estimation and data detectionen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
2020.pdf
Boyut:
247.72 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Publisher's Version