A sequential Monte Carlo method for blind phase noise estimation and data detection
dc.authorid | 0000-0002-3591-6567 | |
dc.authorid | 0000-0001-7328-6626 | |
dc.contributor.author | Panayırcı, Erdal | en_US |
dc.contributor.author | Çırpan, Hakan Ali | en_US |
dc.contributor.author | Moeneclaey, Marc | en_US |
dc.date.accessioned | 2019-08-31T12:10:23Z | |
dc.date.accessioned | 2019-08-05T16:05:04Z | |
dc.date.available | 2019-08-31T12:10:23Z | |
dc.date.available | 2019-08-05T16:05:04Z | |
dc.date.issued | 2005 | |
dc.department | Işık Üniversitesi, Mühendislik Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü | en_US |
dc.department | Işık University, Faculty of Engineering, Department of Electrical-Electronics Engineering | en_US |
dc.description.abstract | In this paper, a computationally efficient algorithm is presented for blind phase noise estimation and data detection jointly, based on a sequential Monte Carlo method. The basic idea is to treat the transmitted symbols as " missing data" and draw samples sequentially of them based on the observed signal samples up to time t. This way, the Bayesian estimates of the phase noise and the incoming data are obtained through these samples, sequentially drawn, together with their importance weights. The proposed receiver structure is seen to be ideally suited for high-speed parallel implementation using VLSI technology. | en_US |
dc.description.version | Publisher's Version | en_US |
dc.identifier.citation | Panayırcı, E., Çırpan, H. A. & Moeneclaey, M. (2005). A sequential monte carlo method for blind phase noise estimation and data detection. Paper presented at the 13th European Signal Processing Conference, EUSIPCO 2005, 1942-1946. | en_US |
dc.identifier.endpage | 1946 | |
dc.identifier.isbn | 1604238216 | |
dc.identifier.isbn | 9781604238211 | |
dc.identifier.scopus | 2-s2.0-84863676265 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.startpage | 1942 | |
dc.identifier.uri | https://hdl.handle.net/11729/2020 | |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Panayırcı, Erdal | en_US |
dc.institutionauthorid | 0000-0001-7328-6626 | |
dc.language.iso | en | en_US |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | 13th European Signal Processing Conference, EUSIPCO 2005 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | High-speed parallel implementation | en_US |
dc.subject | Bayesian estimation | en_US |
dc.subject | Signal sample observation | en_US |
dc.subject | Missing data | en_US |
dc.subject | Transmitted symbols | en_US |
dc.subject | Computationally efficient algorithm | en_US |
dc.subject | Data detection | en_US |
dc.subject | Blind phase noise estimation | en_US |
dc.subject | Sequential Monte Carlo method | en_US |
dc.subject | Sequential estimation | en_US |
dc.subject | Object detection | en_US |
dc.subject | Joints | en_US |
dc.subject | Bayes methods | en_US |
dc.subject | Bit error rate | en_US |
dc.subject | Estimation | en_US |
dc.subject | Phase noise | en_US |
dc.subject | Signal processing | en_US |
dc.subject | Monte Carlo methods | en_US |
dc.subject | Bayesian networks | en_US |
dc.subject | Algorithms | en_US |
dc.subject | VLSI technology | en_US |
dc.subject | Signal samples | en_US |
dc.subject | Sequential Monte Carlo methods | en_US |
dc.subject | Receiver structure | en_US |
dc.subject | Parallel implementations | en_US |
dc.subject | Noise estimation | en_US |
dc.subject | Missing data | en_US |
dc.subject | Importance weights | en_US |
dc.subject | High-speed | en_US |
dc.subject | Data detection | en_US |
dc.subject | Computationally efficient | en_US |
dc.subject | Bayesian estimate | en_US |
dc.subject | Filter CKF | en_US |
dc.subject | Target tracking | en_US |
dc.subject | Kalman filters | en_US |
dc.title | A sequential Monte Carlo method for blind phase noise estimation and data detection | en_US |
dc.type | Conference Object | en_US |
dspace.entity.type | Publication |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- İsim:
- 2020.pdf
- Boyut:
- 247.72 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Publisher's Version