Analysis of single image super resolution models
dc.authorid | 0000-0002-8944-5449 | |
dc.authorid | 0000-0003-0298-0690 | |
dc.contributor.author | Köprülü, Mertali | en_US |
dc.contributor.author | Eskil, Mustafa Taner | en_US |
dc.date.accessioned | 2023-02-06T12:40:28Z | |
dc.date.available | 2023-02-06T12:40:28Z | |
dc.date.issued | 2022-11-18 | |
dc.department | Işık Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.department | Işık University, Faculty of Engineering and Natural Sciences, Department of Computer Engineering | en_US |
dc.description.abstract | Image Super-Resolution (SR) is a set of image processing techniques which improve the resolution of images and videos. Deep learning approaches have made remarkable improvement in image super-resolution in recent years. This article aims and seeks to provide a comprehensive analysis on recent advances of models which has been used in image superresolution. This study has been investigated over other essential topics of current model problems, such as publicly accessible benchmark data-sets and performance evaluation measures. Finally, The study concluded these analysis by highlighting several weaknesses of existing base models as their feeding strategy and approved that the training technique which is Blind Feeding, which led several model to achieve state-of-the art. | en_US |
dc.description.version | Publisher's Version | en_US |
dc.identifier.citation | Köprülü, M. & Eskil. M. T. (2022). Analysis of single image super resolution models. Paper presented at the 2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), 1-6. doi:10.1109/ICECCME55909.2022.9988599 | en_US |
dc.identifier.doi | 10.1109/ICECCME55909.2022.9988599 | |
dc.identifier.endpage | 6 | |
dc.identifier.isbn | 9781665470957 | |
dc.identifier.isbn | 9781665470964 | |
dc.identifier.scopus | 2-s2.0-85146434856 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.startpage | 1 | |
dc.identifier.uri | https://hdl.handle.net/11729/5348 | |
dc.identifier.uri | http://dx.doi.org/10.1109/ICECCME55909.2022.9988599 | |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Köprülü, Mertali | en_US |
dc.institutionauthor | Eskil, Mustafa Taner | en_US |
dc.institutionauthorid | 0000-0002-8944-5449 | |
dc.institutionauthorid | 0000-0003-0298-0690 | |
dc.language.iso | en | en_US |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | 2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME) | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı ve Öğrenci | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Convolutional neural network | en_US |
dc.subject | Generative adversarial networks | en_US |
dc.subject | Image processing | en_US |
dc.subject | Single image super resolution | en_US |
dc.subject | Benchmarking | en_US |
dc.subject | Convolutional neural networks | en_US |
dc.subject | Deep learning | en_US |
dc.subject | Image analysis | en_US |
dc.subject | Image enhancement | en_US |
dc.subject | Optical resolving power | en_US |
dc.subject | Comprehensive analysis | en_US |
dc.subject | Current modeling | en_US |
dc.subject | Image processing technique | en_US |
dc.subject | Image super resolutions | en_US |
dc.subject | Images processing | en_US |
dc.subject | Learning approach | en_US |
dc.subject | Single images | en_US |
dc.subject | Super-resolution models | en_US |
dc.title | Analysis of single image super resolution models | en_US |
dc.type | Conference Object | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- İsim:
- Analysis_of_single_image_super_resolution_models.pdf
- Boyut:
- 343.5 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Publisher's Version
Lisans paketi
1 - 1 / 1
Küçük Resim Yok
- İsim:
- license.txt
- Boyut:
- 1.44 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: