Yazar "Yeh, David T." seçeneğine göre listele
Listeleniyor 1 - 5 / 5
Sayfa Başına Sonuç
Sıralama seçenekleri
Yayın An endoscopie imaging system based on a two-dimensional CMUT array: real-time imaging results(IEEE, 2005) Wygant, Ira O.; Zhuang, Xuefeng; Yeh, David T.; Vaithilingam, Srikant; Nikoozadeh, Amin; Oralkan, Ömer; Ergün, Arif Sanlı; Karaman, Mustafa; Khuri-Yakub, Butrus ThomasReal-time catheter-based ultrasound imaging tools are needed for diagnosis and image-guided procedures. The continued development of these tools is partially limited by the difficulty of fabricating two-dimensional array geometries of piezoelectric transducers. Using capacitive micromachined ultrasonic transducer (CMUT) technology, transducer arrays with widely varying geometries, high frequencies, and wide bandwidths can be fabricated. A volumetric ultrasound imaging system based on a two-dimensional, 16×l6-element, CMUT array is presented. Transducer arrays with operating frequencies ranging from 3 MHz to 7.5 MHz were fabricated for this system. The transducer array including DC bias pads measures 4 mm by 4.7 mm. The transducer elements are connected to flip-chip bond pads on the array back side with 400-?m long through-wafer interconnects. The array is flip-chip bonded to a custom-designed integrated circuit (IC) that comprises the front-end electronics. Integrating the front-end electronics with the transducer array reduces the effects of cable capacitance on the transducer's performance and provides a compact means of connecting to the transducer elements. The front-end IC provides a 27-V pulser and 10-MHz bandwidth amplifier for each element of the array. An FPGA-based data acquisition system is used for control and data acquisition. Output pressure of 230 kPa was measured for the integrated device. A receive sensitivity of 125 mV/kPa was measured at the output of the amplifier. Amplifier output noise at 5 Mhz is 112 nV/?Hz. Volumetric images of a wire phantom and vessel phantom are presented. Volumetric data for a wire phantom was acquired in real-time at 30 frames per second.Yayın An integrated circuit with transmit beamforming and parallel receive channels for real-time three-dimensional ultrasound imaging(IEEE, 2006) Wygant, Ira O.; Lee, Hyunjoo J.; Nikoozadeh, Amin; Yeh, David T.; Oralkan, Ömer; Karaman, Mustafa; Khuri-Yakub, Butrus ThomasWe present the design of an integrated circuit (IC) that will be flip-chip bonded to a 16 x 16-element CMUT array. The IC provides 16 receive channels which can be configured to receive along either of the array diagonals or on any single row of the array. On transmit, all 256 elements can be used to transmit arbitrarily focused beams. Focused transmission with the full array is made possible by on-chip pulsers and memory. A 25-V pulser and 8-bit shift register is provided for each element of the array. Prior to each transmit, new values are loaded into the shift registers. Current-con trolled one-shots control the transmit pulse widths. Circuit simulations and the IC layout are presented. Simulations predict that delay values can be loaded in less than 1.3 mu s and show the generation of precisely timed pulses. The IC is being prepared for submission to National Semiconductor for fabrication in a high-voltage BiCMOS process.Yayın Integrated ultrasonic imaging systems based on CMUT arrays: Recent progress(IEEE, 2004) Wygant, Ira O.; Zhuang, Xuefeng; Yeh, David T.; Nikoozadeh, Amin; Oralkan, Ömer; Ergün, Arif Sanlı; Karaman, Mustafa; Khuri-Yakub, Butrus ThomasThis paper describes the development of an ultrasonic imaging system based on a two-dimensional capacitive micromachined ultrasonic transducer (CMUT) array. The transducer array and front-end electronics are designed to fit in a 5-mm endoscopic channel. A custom-designed integrated circuit, which comprises the front-end electronics, will be connected with the transducer elements via through-wafer interconnects and flip-chip bonding. FPGA-based signal-processing hardware will provide real-time three-dimensional imaging. The imaging system is being developed to demonstrate a means of integrating the front-end electronics with the transducer array and to provide a clinically useful technology. Integration of the electronics can improve signal-to-noise ratio, reduce the number of cables connecting the imaging probe to a separate processing unit, and provide a means of connecting electronics to large two-dimensional transducer arrays. This paper describes the imaging system architecture and the progress we have made on implementing each of its components: a 16×16 CMUT array, custom-designed integrated circuits, a flip-chip bonding technique, and signal-processing hardware.Yayın Integration of 2D CMUT arrays with front-end electronics for volumetric ultrasound imaging(IEEE-INST Electrical Electronics Engineers Inc, 2008-02) Wygant, Ira O.; Zhuang, Xuefeng; Yeh, David T.; Oralkan, Ömer; Ergün, Arif Sanlı; Karaman, Mustafa; Khuri-Yakub, Butrus ThomasFor three-dimensional (3D) ultrasound imaging, connecting elements of a two-dimensional (2D) transducer array to the imaging system's front-end electronics is a challenge because of the large number of array elements and the small element size. To compactly connect the transducer array with electronics, we flip-chip bond a 2D 16 x 16-element capacitive micromachined ultrasonic transducer (CMUT) array to a custom-designed integrated circuit (IC). Through-wafer interconnects are used to connect the CMUT elements on the top side of the array with flip-chip bond pads on the back side. The IC provides a 25-V pulser and a transimpedance preamplifier to each element of the array. For each of three characterized devices, the element yield is excellent (99 to 100% of the elements are functional). Center frequencies range from 2.6 MHz to 5.1 MHz. For pulse-echo operation, the average -6-dB fractional bandwidth is as high as 125%. Transmit pressures normalized to the face of the transducer are as high as 339 kPa and input-referred receiver noise is typically 1.2 to 2.1 mPa/root Hz. The flip-chip bonded devices were used to acquire 3D synthetic aperture images of a wire-target phantom. Combining the transducer array and IC, as shown in this paper, allows for better utilization of large arrays, improves receive sensitivity, and may lead to new imaging techniques that depend on transducer arrays that are closely coupled to IC electronics.Yayın A miniature real-time volumetric ultrasound imaging system(SPIE-Int Soc Optical Engineering, 2005) Wygant, Ira O.; Yeh, David T.; Zhuang, Xuefeng; Nikoozadeh, Amin; Oralkan, Ömer; Ergün, Arif Sanlı; Karaman, Mustafa; Khuri-Yakub, Butrus ThomasProgress made in the development of a miniature real-time volumetric ultrasound imaging system is presented. This system is targeted for use in a 5-mm endoscopic channel and will provide real-time, 30-mm deep, volumetric images. It is being developed as a clinically useful device, to demonstrate a means of integrating the front-end electronics with the transducer array, and to demonstrate the advantages of the capacitive micromachined ultrasonic transducer (CMUT) technology for medical imaging. Presented here is the progress made towards the initial implementation of this system, which is based on a two-dimensional, 16×16 CMUT array. Each CMUT element is 250 µm by 250 µm and has a 5-MHz center frequency. The elements are connected to bond pads on the back side of the array with 400-µm long through-wafer interconnects. The transducer array is flip-chip bonded to a custom-designed integrated circuit that comprises the front-end electronics. The result is that each transducer element is connected to a dedicated pulser and low-noise preamplifier. The pulser generates 25-V, 100-ns wide, unipolar pulses. The preamplifier has an approximate transimpedance gain of 500 k? and 3-dB bandwidth of 10 MHz. In the first implementation of the system, one element at a time can be selected for transmit and receive and thus synthetic aperture images can be generated. In future implementations, 16 channels will be active at a given time. These channels will connect to an FPGA-based data acquisition system for real-time image reconstruction.