Parallel univariate decision trees
dc.authorid | 0000-0001-5838-4615 | |
dc.authorid | 0000-0002-6565-4860 | |
dc.contributor.author | Yıldız, Olcay Taner | en_US |
dc.contributor.author | Dikmen, Onur | en_US |
dc.date.accessioned | 2015-01-15T23:00:49Z | |
dc.date.available | 2015-01-15T23:00:49Z | |
dc.date.issued | 2007-05-01 | |
dc.department | Işık Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.department | Işık University, Faculty of Engineering, Department of Computer Engineering | en_US |
dc.description.abstract | Univariate decision tree algorithms are widely used in data mining because (i) they are easy to learn (ii) when trained they can be expressed in rule based manner. In several applications mainly including data mining, the dataset to be learned is very large. In those cases it is highly desirable to construct univariate decision trees in reasonable time. This may be accomplished by parallelizing univariate decision tree algorithms. In this paper, we first present two different univariate decision tree algorithms C4.5 and univariate linear discriminant tree. We show how to parallelize these algorithms in three ways: (i) feature based; (ii) node based; (iii) data based manners. Experimental results show that performance of the parallelizations highly depend on the dataset and the node based parallelization demonstrate good speedups. | en_US |
dc.description.version | Publisher's Version | en_US |
dc.identifier.citation | Yıldız, O. T. & Dikmen, O. (2007). Parallel univariate decision trees. Pattern Recognition Letters, 28(7), 825-832. doi:10.1016/j.patrec.2006.11.009 | en_US |
dc.identifier.doi | 10.1016/j.patrec.2006.11.009 | |
dc.identifier.endpage | 832 | |
dc.identifier.issn | 0167-8655 | |
dc.identifier.issn | 0167-8655 | |
dc.identifier.issue | 7 | |
dc.identifier.scopus | 2-s2.0-33847242621 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 825 | |
dc.identifier.uri | https://hdl.handle.net/11729/257 | |
dc.identifier.uri | http://dx.doi.org/10.1016/j.patrec.2006.11.009 | |
dc.identifier.volume | 28 | |
dc.identifier.wos | WOS:000245060700007 | |
dc.identifier.wosquality | Q2 | |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.indekslendigikaynak | Science Citation Index Expanded (SCI-EXPANDED) | en_US |
dc.institutionauthor | Yıldız, Olcay Taner | en_US |
dc.institutionauthorid | 0000-0001-5838-4615 | |
dc.language.iso | en | en_US |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.publisher | Elsevier B.V. | en_US |
dc.relation.ispartof | Pattern Recognition Letters | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Decision trees | en_US |
dc.subject | Parallel processing | en_US |
dc.subject | Univariate decision trees | en_US |
dc.subject | Linear discriminant trees | en_US |
dc.subject | Algorithms | en_US |
dc.subject | Data mining | en_US |
dc.subject | Data structures | en_US |
dc.subject | Decision theory | en_US |
dc.subject | Parallel processing systems | en_US |
dc.subject | Parallelization | en_US |
dc.subject | Trees (mathematics) | en_US |
dc.title | Parallel univariate decision trees | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication |