VC-dimension of univariate decision trees
dc.authorid | 0000-0001-5838-4615 | |
dc.contributor.author | Yıldız, Olcay Taner | en_US |
dc.date.accessioned | 2015-07-14T11:00:06Z | |
dc.date.available | 2015-07-14T11:00:06Z | |
dc.date.issued | 2015-02-25 | |
dc.department | Işık Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.department | Işık University, Faculty of Engineering, Department of Computer Engineering | en_US |
dc.description.abstract | In this paper, we give and prove the lower bounds of the Vapnik-Chervonenkis (VC)-dimension of the univariate decision tree hypothesis class. The VC-dimension of the univariate decision tree depends on the VC-dimension values of its subtrees and the number of inputs. Via a search algorithm that calculates the VC-dimension of univariate decision trees exhaustively, we show that our VC-dimension bounds are tight for simple trees. To verify that the VC-dimension bounds are useful, we also use them to get VC-generalization bounds for complexity control using structural risk minimization in decision trees, i.e., pruning. Our simulation results show that structural risk minimization pruning using the VC-dimension bounds finds trees that are more accurate as those pruned using cross validation. | en_US |
dc.description.version | Publisher's Version | en_US |
dc.description.version | Author Post Print | en_US |
dc.identifier.citation | Yıldız, O. T. (2015). VC-dimension of univariate decision trees. IEEE Transactions on Neural Networks and Learning Systems, 26(2), 378-387. doi:10.1109/TNNLS.2014.2385837 | en_US |
dc.identifier.doi | 10.1109/TNNLS.2014.2385837 | |
dc.identifier.endpage | 387 | |
dc.identifier.issn | 2162-237X | |
dc.identifier.issn | 2162-2388 | |
dc.identifier.issue | 2 | |
dc.identifier.pmid | 25594983 | |
dc.identifier.scopus | 2-s2.0-84921446924 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.startpage | 378 | |
dc.identifier.uri | https://hdl.handle.net/11729/581 | |
dc.identifier.uri | http://dx.doi.org/10.1109/TNNLS.2014.2385837 | |
dc.identifier.volume | 26 | |
dc.identifier.wos | WOS:000348856200015 | |
dc.identifier.wosquality | Q1 | |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.indekslendigikaynak | PubMed | en_US |
dc.indekslendigikaynak | Science Citation Index Expanded (SCI-EXPANDED) | en_US |
dc.institutionauthor | Yıldız, Olcay Taner | en_US |
dc.institutionauthorid | 0000-0001-5838-4615 | |
dc.language.iso | en | en_US |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.publisher | IEEE-INST Electrical Electronics Engineers Inc | en_US |
dc.relation.journal | IEEE Transactions on Neural Networks and Learning Systems | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Computation theory | en_US |
dc.subject | Decision trees | en_US |
dc.subject | Learning | en_US |
dc.subject | Machine learning | en_US |
dc.subject | Supervised learning | en_US |
dc.subject | Vapnik-Chervonenkis (VC)-dimension | en_US |
dc.subject | Model selection | en_US |
dc.subject | Classifiers | en_US |
dc.subject | Regression | en_US |
dc.subject | Complexity | en_US |
dc.subject | Bounds | en_US |
dc.title | VC-dimension of univariate decision trees | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication |