Tree Ensembles on the induced discrete space
dc.authorid | 0000-0001-5838-4615 | |
dc.contributor.author | Yıldız, Olcay Taner | en_US |
dc.date.accessioned | 2016-05-23T12:21:12Z | |
dc.date.available | 2016-05-23T12:21:12Z | |
dc.date.issued | 2016-05 | |
dc.department | Işık Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.department | Işık University, Faculty of Engineering, Department of Computer Engineering | en_US |
dc.description.abstract | Decision trees are widely used predictive models in machine learning. Recently, K-tree is proposed, where the original discrete feature space is expanded by generating all orderings of values of k discrete attributes and these orderings are used as the new attributes in decision tree induction. Although K-tree performs significantly better than the proper one, their exponential time complexity can prohibit their use. In this brief, we propose K-forest, an extension of random forest, where a subset of features is selected randomly from the induced discrete space. Simulation results on 17 data sets show that the novel ensemble classifier has significantly lower error rate compared with the random forest based on the original feature space. | en_US |
dc.description.version | Publisher's Version | en_US |
dc.identifier.citation | Yıldız, O. T. (2016). Tree ensembles on the induced discrete space. IEEE Transactions on Neural Networks and Learning Systems, 27(5), 1108-1113. doi:10.1109/TNNLS.2015.2430277 | en_US |
dc.identifier.doi | 10.1109/TNNLS.2015.2430277 | |
dc.identifier.endpage | 1113 | |
dc.identifier.issn | 2162-237X | |
dc.identifier.issn | 2162-2388 | |
dc.identifier.issue | 5 | |
dc.identifier.pmid | 26011897 | |
dc.identifier.scopus | 2-s2.0-84929773889 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 1108 | |
dc.identifier.uri | https://hdl.handle.net/11729/863 | |
dc.identifier.uri | http://dx.doi.org/10.1109/TNNLS.2015.2430277 | |
dc.identifier.volume | 27 | |
dc.identifier.wos | WOS:000375113700015 | |
dc.identifier.wosquality | Q1 | |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.indekslendigikaynak | PubMed | en_US |
dc.indekslendigikaynak | Science Citation Index Expanded (SCI-EXPANDED) | en_US |
dc.institutionauthor | Yıldız, Olcay Taner | en_US |
dc.institutionauthorid | 0000-0001-5838-4615 | |
dc.language.iso | en | en_US |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.journal | IEEE Transactions on Neural Networks and Learning Systems | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Classification | en_US |
dc.subject | Decision trees | en_US |
dc.subject | Feature extraction | en_US |
dc.subject | Random forest | en_US |
dc.subject | Artificial intelligence | en_US |
dc.subject | Classification (of information) | en_US |
dc.subject | Learning system | en_US |
dc.subject | Decision tree induction | en_US |
dc.subject | Discrete attributes | en_US |
dc.subject | Discrete spaces | en_US |
dc.subject | Ensemble classifiers | en_US |
dc.subject | Exponential time complexity | en_US |
dc.subject | Predictive models | en_US |
dc.subject | Tree ensembles | en_US |
dc.title | Tree Ensembles on the induced discrete space | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication |