Colored simultaneous geometric embeddings

Yükleniyor...
Küçük Resim

Tarih

2007

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer-Verlag Berlin

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

We introduce the concept of colored simultaneous geometric embeddings as a generalization of simultaneous graph embeddings with and without mapping. We show that there exists a universal pointset of size n for paths colored with two or three colors. We use these results to show that colored simultaneous geometric embeddings exist for: (1) a 2-colored tree together with any number of 2-colored paths and (2) a 2-colored outerplanar graph together with any number of 2-colored paths. We also show that there does not exist a universal pointset of size n for paths colored with five colors. We finally show that the following simultaneous embeddings are not possible: (1) three 6-colored cycles, (2) four 6-colored paths, and (3) three 9-colored paths.

Açıklama

Anahtar Kelimeler

Blue point, Computer graphics, Computer simulation, Drawing (forming), Drawing (graphics), Embedded systems, Eulerian circuit, Geometric embeddings, Outerplanar graph, Planar drawing, Planar graph, Plane drawing

Kaynak

Computing And Combinatorics, Proceedings

WoS Q Değeri

Q4

Scopus Q Değeri

Q3

Cilt

4598

Sayı

Künye

Brandes, U., Erten, C., Fowler, J., Frati, F., Geyer, M., Gutwenger, C., . . . & Symvonis, A. (2007). Colored simultaneous geometric embeddings. Paper presented at the Computing And Combinatorics, Proceedings, 4598, 254-263.doi:10.1007/978-3-540-73545-8_26