Incremental construction of classifier and discriminant ensembles

dc.authorid0000-0003-2225-7491
dc.authorid0000-0003-0737-1181
dc.authorid0000-0001-5838-4615
dc.authorid0000-0001-7506-0321
dc.contributor.authorUlaş, Aydınen_US
dc.contributor.authorSemerci, Muraten_US
dc.contributor.authorYıldız, Olcay Taneren_US
dc.contributor.authorAlpaydın, Ahmet İbrahim Ethemen_US
dc.date.accessioned2015-01-15T23:01:19Z
dc.date.available2015-01-15T23:01:19Z
dc.date.issued2009-04-15
dc.departmentIşık Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.departmentIşık University, Faculty of Engineering, Department of Computer Engineeringen_US
dc.descriptionWe would like to thank the three anonymous referees and the editor for their constructive comments, pointers to related literature, and pertinent questions which allowed us to better situate our work as well as organize the ms and improve the presentation. This work has been supported by the Turkish Academy of Sciences in the framework of the Young Scientist Award Program (EA-TUBA-GEBIP/2001-1-1), Bogazici University Scientific Research Project 05HA101 and Turkish Scientific Technical Research Council TUBITAK EEEAG 104EO79en_US
dc.description.abstractWe discuss approaches to incrementally construct an ensemble. The first constructs an ensemble of classifiers choosing a subset from a larger set, and the second constructs an ensemble of discriminants, where a classifier is used for some classes only. We investigate criteria including accuracy, significant improvement, diversity, correlation, and the role of search direction. For discriminant ensembles, we test subset selection and trees. Fusion is by voting or by a linear model. Using 14 classifiers on 38 data sets. incremental search finds small, accurate ensembles in polynomial time. The discriminant ensemble uses a subset of discriminants and is simpler, interpretable, and accurate. We see that an incremental ensemble has higher accuracy than bagging and random subspace method; and it has a comparable accuracy to AdaBoost. but fewer classifiers.en_US
dc.description.sponsorshipTÜBİTAKen_US
dc.description.sponsorshipTürkiye Bilimler Akademisien_US
dc.description.sponsorshipBoğaziçi Üniversitesien_US
dc.description.versionPublisher's Versionen_US
dc.description.versionAuthor Pre-Printen_US
dc.identifier.citationUlaş, A., Semerci, M., Yıldız, O. T. & Alpaydın, E. (2009). Incremental construction of classifier and discriminant ensembles. Information Sciences, 179(9), 1298-1318. doi:10.1016/j.ins.2008.12.024en_US
dc.identifier.doi10.1016/j.ins.2008.12.024
dc.identifier.endpage1318
dc.identifier.issn0020-0255
dc.identifier.issn1872-6291
dc.identifier.issue9
dc.identifier.scopus2-s2.0-60349123276
dc.identifier.scopusqualityQ1
dc.identifier.startpage1298
dc.identifier.urihttps://hdl.handle.net/11729/332
dc.identifier.urihttp://dx.doi.org/10.1016/j.ins.2008.12.024
dc.identifier.volume179
dc.identifier.wosWOS:000264567500007
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakScience Citation Index Expanded (SCI-EXPANDED)en_US
dc.institutionauthorYıldız, Olcay Taneren_US
dc.institutionauthorid0000-0001-5838-4615
dc.language.isoenen_US
dc.peerreviewedYesen_US
dc.publicationstatusPublisheden_US
dc.publisherElsevier Science Incen_US
dc.relation.ispartofInformation Sciencesen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectClassificationen_US
dc.subjectClassifier fusionen_US
dc.subjectClassifier ensemblesen_US
dc.subjectStackingen_US
dc.subjectMachine learningen_US
dc.subjectVotingen_US
dc.subjectDiscriminant ensemblesen_US
dc.subjectDiversityen_US
dc.subjectClassifiersen_US
dc.subjectPolynomial approximationen_US
dc.subjectRobot learningen_US
dc.subjectLearning systemsen_US
dc.titleIncremental construction of classifier and discriminant ensemblesen_US
dc.typeArticleen_US
dspace.entity.typePublication

Dosyalar

Orijinal paket
Listeleniyor 1 - 2 / 2
Küçük Resim Yok
İsim:
332.pdf
Boyut:
580.9 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Publisher's Version
Yükleniyor...
Küçük Resim
İsim:
332.pdf
Boyut:
277.26 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Author Pre-Print