Eigenclassifiers for combining correlated classifiers
dc.authorid | 0000-0003-2225-7491 | |
dc.authorid | 0000-0001-5838-4615 | |
dc.authorid | 0000-0001-7506-0321 | |
dc.contributor.author | Ulaş, Aydın | en_US |
dc.contributor.author | Yıldız, Olcay Taner | en_US |
dc.contributor.author | Alpaydın, Ahmet İbrahim Ethem | en_US |
dc.date.accessioned | 2015-01-15T23:02:04Z | |
dc.date.available | 2015-01-15T23:02:04Z | |
dc.date.issued | 2012-03-15 | |
dc.department | Işık Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.department | Işık University, Faculty of Engineering, Department of Computer Engineering | en_US |
dc.description.abstract | In practice, classifiers in an ensemble are not independent. This paper is the continuation of our previous work on ensemble subset selection [A. Ulas, M. Semerci, O.T. Yildiz, E. Alpaydin, Incremental construction of classifier and discriminant ensembles, Information Sciences, 179 (9) (2009) 1298-1318] and has two parts: first, we investigate the effect of four factors on correlation: (i) algorithms used for training, (ii) hyperparameters of the algorithms, (iii) resampled training sets, (iv) input feature subsets. Simulations using 14 classifiers on 38 data sets indicate that hyperparameters and overlapping training sets have higher effect on positive correlation than features and algorithms. Second, we propose postprocessing before fusing using principal component analysis (PCA) to form uncorrelated eigenclassifiers from a set of correlated experts. Combining the information from all classifiers may be better than subset selection where some base classifiers are pruned before combination, because using all allows redundancy. | en_US |
dc.description.sponsorship | We would like to thank Mehmet Gallen for discussions. This work has been supported by the Turkish Academy of Sciences in the framework of the Young Scientist Award Program (EA-TUBA-GEBIP/2001-1-1), Bogazici University Scientific Research Project 05HA101 and Turkish Scientific Technical Research Council TUBITAK EEEAG 104E079 | en_US |
dc.description.version | Publisher's Version | en_US |
dc.identifier.citation | Ulaş, A. & Yıldız, O. T. & Alpaydın, A. İ. E. (2012). Eigenclassifiers for combining correlated classifiers. Information Sciences, 187(1), 109-120. doi:10.1016/j.ins.2011.10.024 | en_US |
dc.identifier.doi | 10.1016/j.ins.2011.10.024 | |
dc.identifier.endpage | 120 | |
dc.identifier.issn | 0020-0255 | |
dc.identifier.issue | 1 | |
dc.identifier.scopus | 2-s2.0-84155172806 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 109 | |
dc.identifier.uri | https://hdl.handle.net/11729/450 | |
dc.identifier.uri | http://dx.doi.org/10.1016/j.ins.2011.10.024 | |
dc.identifier.volume | 187 | |
dc.identifier.wos | WOS:000300201600007 | |
dc.identifier.wosquality | N/A | |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.indekslendigikaynak | Science Citation Index Expanded (SCI-EXPANDED) | en_US |
dc.institutionauthor | Yıldız, Olcay Taner | en_US |
dc.institutionauthorid | 0000-0001-5838-4615 | |
dc.language.iso | en | en_US |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.publisher | Elsevier Science Inc | en_US |
dc.relation.ispartof | Information Sciences | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Classifier correlation | en_US |
dc.subject | Classifier design and evaluation | en_US |
dc.subject | Machine learning | en_US |
dc.subject | Stacked generalization | en_US |
dc.subject | Principal components | en_US |
dc.subject | Ensemble | en_US |
dc.subject | Systems | en_US |
dc.subject | Algorithms | en_US |
dc.subject | Base classifiers | en_US |
dc.subject | Data sets | en_US |
dc.subject | Hyperparameters | en_US |
dc.subject | Incremental construction | en_US |
dc.subject | Input features | en_US |
dc.subject | Machine-learning | en_US |
dc.subject | Positive correlations | en_US |
dc.subject | Subset selection | en_US |
dc.subject | Training sets | en_US |
dc.subject | Principal component analysis | en_US |
dc.subject | Classification (of information) | en_US |
dc.title | Eigenclassifiers for combining correlated classifiers | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- İsim:
- 450.pdf
- Boyut:
- 427.4 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Publisher's Version