Elektroensefalogram (EEG) işaretlerinin sıkıştırılmasında özgün bir yaklaşım
Dosyalar
Tarih
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
Özet
Bu çalışmada, Elektroensefalogram(EEG) işaretlerinin yeniden oluşturulmasına yönelik olarak yeni bir yöntem sunulmaktadır. Sunulan yöntem, etkin bir k-ortalamalı sınıflandırma algoritması kullanılarak Sınıflandırılmış Temel Tanım ve Zarf Vektör Setlerinin oluşturulmasına dayanmaktadır. Bu çalışmada, EEG işaretleri eşit uzunluklu çerçevelere bölünerek analiz edilmiş ve herbir çerçeve Sınıflandırılmış Temel Tanım vektörü, Sınıflandırılmış Zarf vektörü ve Çerçeve Ölçekleme Katsayısı olarak adlandırılan üç parametrenin çarpımı biçiminde modellenmiştir. Bu durumda, EEG işaretinin herbir çerçevesi sınıflandırılmış temel tanım ve zarf vektör setlerine ilişkin iki sıra numarası R ve K ile çerçeve ölçekleme katsayısı cinsinden tanımlanabilir. Önerilen yöntemin başarımı ortalama karesel hata tanımı ve görsel inceleme ölçütü yoluyla değerlendirilmiştir. Önerilen yöntem, EEG işaretlerinin tanı açısından önemli kısımları korunarak, düşük yeniden oluşturma hataları ve yüksek sıkıştırma oranları ile yeniden oluşturulmasını sağlamaktadır.
In this paper, a novel method to compress ElectroEncephaloGram (EEG) Signal is proposed. The proposed method is based on the generation Classified Signature and Envelope Vector Sets (CSEVS) by using an effective k-means clustering algorithm. In this work, on a frame basis, any EEG signal is modeled by multiplying three parameters as called the Classified Signature Vector, Classified Envelope Vector, and Frame-Scaling Coefficient. In this case, EEG signal for each frame is described in terms of the two indices R and K of CSEVS and the frame-scaling coefficient. The proposed method is assessed through the use of root-mean-square error (RMSE) and visual inspection measures. The proposed method achieves good compression ratios with low level reconstruction error while preserving diagnostic information in the reconstructed EEG signal.