On travelling wave solutions of a generalized Davey-Stewartson system
Dosyalar
Tarih
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
Özet
The generalized Davey-Stewartson (GDS) equations, as derived by Babaoglu & Erbay (2004, Int. J. Non-Linear Mech., 39, 941-949), is a system of three coupled equations in (2 + 1) dimensions modelling wave propagation in an infinite elastic medium. The physical parameters (gamma, m(1), m(2), lambda and n) of the system allow one to classify the equations as elliptic-elliptic-elliptic (EEE), elliptic-elliptic-hyperbolic (EEH), elliptic-hyperbolic-hyperbolic (EHH), hyperbolic-elliptic-elliptic (HEE), hyperbolic-hyperbolic-hyperbolic (HHH) and hyperbolic-elliptic-hyperbolic (HEH) (Babaoglu et al., 2004, preprint). In this note, we only consider the EEE and HEE cases and seek travelling wave solutions to GDS systems. By deriving Pohozaev-type identities we establish some necessary conditions on the parameters for the existence of travelling waves, when solutions satisfy some integrability conditions. Using the explicit solutions given in Babaoglu & Erbay (2004) we also show that the parameter constraints must be weaker in the absence of such integrability conditions.