An essential approach to the architecture of diatomic molecules: 2. how are size, vibrational period of time, and mass interrelated?
Yükleniyor...
Dosyalar
Tarih
2004-11
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Optical Soc Amer
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
In our previous article, we arrived at an essential relationship for T the classical vibrational period of a given diatomic molecule, at the total electronic energy E-, i.e., T = [4pi(2)/(rootn(1)n(2)h)] rootgM(0)m(e) R-2, where M-0 to is the reduced mass of the nuclei; m(3) is the mass of the electron; R is the internuclear distance: g is a dimensionless and relativistically invariant coefficient, roughly around unity; and n(1) and n(2) are the principal quantum numbers of electrons making up the bond(s) of the diatomic molecule, which, because of quantum defects. are not integer numbers. The above relationship holds generally. It essentially yields T similar to R 2 for the classical vibrational period versus the square of the internuclear distance in different electronic states of a given molecule. which happens to be an approximate relationship known since 1925 but not understood until now. For similarly configured electronic states, we determine n(1)n(2) to be R/R-0, where R is the internuclear distance in the given electronic state and R-0 is the internuclear distance in the ground state. Furthermore. from the analysis of H-2 spectroscopic data, we found out that the ambiguous states of this molecule are configured like alkali hydrides and Li-2. This suggests that, quantum mechanically, on the basis of an equivalent H-2 excited state. we can describe well, for example, the ground state of Li-2. On the basis of this interesting finding, herein we propose to associate the quantum numbers n(1) and n2 With the bond electrons of the ground state of any diatomic molecule belonging to a given chemical family in reference to the ground state of a diatomic molecule still belonging to this family but bearing, say, the lowest classical vibrational period, since g, depending only on the electronic configuration. will stay nearly constant throughout. This allows us to draw up a complete systematization of diatomic molecules given that g (appearing to be dependent purely on the electronic structure of the molecule) stays constant for chemically alike molecules and n(1)n(2) can be identified to be R-0/R-00 for diatomic molecules whose bonds are electronically configured in the same way, R-00 then being the internuclear distance of the ground state of the molecule chosen as the reference molecule within the chemical fan-Lily under consideration. Our approach discloses the simple architecture of diatomic molecules, otherwise hidden behind a much too cumbersome quantum-mechanical description. This architecture, telling how the vibrational period of Lime. size. and mass are determined, is Lorentz-invariant and can be considered as the mechanism of the behavior of the quantities in question in interrelation with each other when the molecule is brought into uniform translational motion or transplanted into a gravitational field or, in fact, any field with which it can interact.
Açıklama
Anahtar Kelimeler
Force-constants, H-2, States, Electrons, Hydrogen, Spectroscopy, Eigenvalues and eigenfunctions, Electronic structure, Ground state, Hamiltonians, Diatomic structure, Electron bonds, Electronic states, Quantum numbers, Atomic spectroscopy
Kaynak
Optics And Spectroscopy
WoS Q Değeri
Q4
Scopus Q Değeri
Q4
Cilt
97
Sayı
5
Künye
Yarman, N. T. (2004). An essential approach to the architecture of diatomic molecules: 2. how are size, vibrational period of time, and mass interrelated?. Optics and Spectroscopy, 97(5), 691-700. doi:10.1134/1.1828617