A robust localization framework to handle noisy measurements in wireless sensor networks
dc.authorid | 0000-0002-8149-7113 | |
dc.contributor.author | Erten, Cesim | en_US |
dc.contributor.author | Karataş, Ömer | en_US |
dc.date.accessioned | 2019-07-30T18:23:24Z | |
dc.date.available | 2019-07-30T18:23:24Z | |
dc.date.issued | 2009-09-14 | |
dc.department | Işık Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.department | Işık University, Faculty of Engineering, Department of Computer Engineering | en_US |
dc.description | Partially supported by TUBITAK grant 106E071. | en_US |
dc.description.abstract | We construct a robust localization framework to handle noisy measurements in wireless sensor networks. Traditionally many approaches employ the distance information gathered from ranging devices of the sensor nodes to achieve localization. However the measurements of these devices may contain noise both as hardware noise and as environmental noise due to the employment conditions of the network. It Is necessary to provide a general framework that handles such a noise in data and yet still be applicable within several localization algorithms. In order to handle noise in distance measurements, our framework utilizes convex constraints and confidence intervals of a random variable. At the end of the localization process nodes are assigned to a set of feasible regions with corresponding probabilities. The accuracy of the localization can be adjusted and the framework can easily be embedded to work within previously suggested localization algorithms. | en_US |
dc.description.sponsorship | Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) | en_US |
dc.description.version | Publisher's Version | en_US |
dc.identifier.citation | Erten, C. & Karataş, O. (2009). A robust localization framework to handle noisy measurements in wireless sensor networks. Paper presented at the 2009 24th International Symposium on Computer and Information Sciences, 709-714. doi:10.1109/ISCIS.2009.5291910 | en_US |
dc.identifier.doi | 10.1109/ISCIS.2009.5291910 | |
dc.identifier.endpage | 714 | |
dc.identifier.isbn | 9781424450213 | |
dc.identifier.isbn | 9781424450237 | |
dc.identifier.scopus | 2-s2.0-73949090960 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.startpage | 709 | |
dc.identifier.uri | https://hdl.handle.net/11729/1666 | |
dc.identifier.uri | http://dx.doi.org/10.1109/ISCIS.2009.5291910 | |
dc.identifier.wos | WOS:000275024200125 | |
dc.identifier.wosquality | N/A | |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.indekslendigikaynak | Conference Proceedings Citation Index – Science (CPCI-S) | en_US |
dc.institutionauthor | Karataş, Ömer | en_US |
dc.language.iso | en | en_US |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | 2009 24th International Symposium on Computer and Information Sciences | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Algorithm | en_US |
dc.subject | Confidence interval | en_US |
dc.subject | Convex constraints | en_US |
dc.subject | Distance information | en_US |
dc.subject | Employment conditions | en_US |
dc.subject | Environmental noise | en_US |
dc.subject | Feasible regions | en_US |
dc.subject | Localization algorithm | en_US |
dc.subject | Noisy measurements | en_US |
dc.subject | Process nodes | en_US |
dc.subject | Information science | en_US |
dc.subject | Random processes | en_US |
dc.subject | Random variables | en_US |
dc.subject | Sensor networks | en_US |
dc.subject | Sensor nodes | en_US |
dc.subject | Telecommunication equipment | en_US |
dc.subject | Wireless telecommunication systems | en_US |
dc.subject | Wireless sensor networks | en_US |
dc.subject | Working environment noise | en_US |
dc.subject | Acoustic noise | en_US |
dc.subject | Global positioning system | en_US |
dc.subject | Hardware | en_US |
dc.subject | Distance measurement | en_US |
dc.subject | Noise robustness | en_US |
dc.subject | Weather forecasting | en_US |
dc.subject | Optical noise | en_US |
dc.subject | Robust localization framework | en_US |
dc.title | A robust localization framework to handle noisy measurements in wireless sensor networks | en_US |
dc.type | Conference Object | en_US |
dspace.entity.type | Publication |