A new local path planning approach by synthesis of PRM and RRT* algorithms for an autonomous mobile robot

dc.authorid0000-0003-3985-9966
dc.authorid0000-0002-5987-8980
dc.contributor.authorGöktaş, Anıl Gökhanen_US
dc.contributor.authorSezer, Semihen_US
dc.date.accessioned2025-08-26T08:17:49Z
dc.date.available2025-08-26T08:17:49Z
dc.date.issued2025-02
dc.departmentIşık Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Makine Mühendisliği Bölümüen_US
dc.departmentIşık University, Faculty of Engineering and Natural Sciences, Department of Mechanical Engineeringen_US
dc.descriptionThis work has been supported by Yildiz Technical University Scientific Research Projects Coordination Unit under project number FYL-2022-4880.en_US
dc.description.abstractMany research efforts have been and continue to be carried out to make human life easier through the use of new technologies. The ability to shift labor to non-humans and reduce the workforce demonstrates the scope of innovation. In this investigation, a new approach is proposed to address several shortcomings of the PRM and RRT algorithms used for path planning in mobile robots. The proposed approach differs by building markers around it, avoiding dynamic obstacles and providing a shorter path. Simulation studies of the PRM and RRT* algorithms, along with the Circular Nodes (CN) approach, were conducted in real and virtual environments. Meanwhile, experimental studies for the CN approach were carried out in a real environment, with obstacles. When compared to other methods, the proposed approach has demonstrated an increase in node efficiency by up to five times. Moreover, implementing node points that are approximately 10% of those used in the PRM and RRT* algorithms has resulted in a shorter path. The reduction in the number of nodes and path length leads to a reduction in energy consumption and processing power.en_US
dc.description.sponsorshipYildiz Technical University Scientific Research Projects Coordination Uniten_US
dc.description.versionPublisher's Versionen_US
dc.identifier.citationGöktaş, A. G. & Sezer, S. (2025). A new local path planning approach by synthesis of PRM and RRT* algorithms for an autonomous mobile robot. Journal of Control, Automation and Electrical Systems, 36(1), 72-85. doi:10.1007/s40313-024-01144-3en_US
dc.identifier.doi10.1007/s40313-024-01144-3
dc.identifier.endpage85
dc.identifier.issn2195-3880
dc.identifier.issn2195-3899
dc.identifier.issue1
dc.identifier.scopus2-s2.0-85214127385
dc.identifier.scopusqualityQ2
dc.identifier.startpage72
dc.identifier.urihttps://hdl.handle.net/11729/6657
dc.identifier.urihttps://doi.org/10.1007/s40313-024-01144-3
dc.identifier.volume36
dc.identifier.wosWOS:001389745500001
dc.identifier.wosqualityQ3
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakEmerging Sources Citation Index (ESCI)en_US
dc.institutionauthorGöktaş, Anıl Gökhanen_US
dc.institutionauthorid0000-0003-3985-9966
dc.language.isoenen_US
dc.peerreviewedYesen_US
dc.publicationstatusPublisheden_US
dc.publisherSpringeren_US
dc.relation.ispartofJournal of Control, Automation and Electrical Systemsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAutonomous mobile roboten_US
dc.subjectPath planningen_US
dc.subjectPRMen_US
dc.subjectRRT*en_US
dc.subjectMicrorobotsen_US
dc.subjectMobile robotsen_US
dc.subjectMotion planningen_US
dc.subjectVirtual environmentsen_US
dc.subjectDynamic obstaclesen_US
dc.subjectHuman livesen_US
dc.subjectLocal path-planningen_US
dc.subjectNew approachesen_US
dc.subjectResearch effortsen_US
dc.subjectShort-pathen_US
dc.subjectSimulation studiesen_US
dc.subjectRobot programmingen_US
dc.titleA new local path planning approach by synthesis of PRM and RRT* algorithms for an autonomous mobile roboten_US
dc.typeArticleen_US
dspace.entity.typePublicationen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
A_new_local_path_planning_approach_by_synthesis_of_PRM_and_RRT_algorithms_for_an_autonomous_mobile_robot.pdf
Boyut:
2.54 MB
Biçim:
Adobe Portable Document Format
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.17 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: