Cluster based sensors scheduling in a target tracking application with particle filter method
dc.contributor.advisor | Bayazıt, Uluğ | en_US |
dc.contributor.author | Özfidan, Özgür | en_US |
dc.contributor.other | Işık Üniversitesi, Fen Bilimleri Enstitüsü, Elektronik Mühendisliği Yüksek Lisans Programı | en_US |
dc.date.accessioned | 2016-06-09T11:18:45Z | |
dc.date.available | 2016-06-09T11:18:45Z | |
dc.date.issued | 2006 | |
dc.department | Işık Üniversitesi, Fen Bilimleri Enstitüsü, Elektronik Mühendisliği Yüksek Lisans Programı | en_US |
dc.description | Text in English ; Abstract: English | en_US |
dc.description | Includes bibliographical references (leaves 39-40) | en_US |
dc.description | vii, 40 leaves | en_US |
dc.description.abstract | In multisensor applications, management of sensors is neccessary for the classification of data they produce and for the efficient use of sensors as well. One of the most important aspects in sensor management is the sensor scheduling. By scheduling the sensors, serious redictions can be achieved in the cost of bandwith, power and computation. In this thesis, a simple solution for the problem of sensor scheduling in a multi-sensor target tracking application is presented. Proposed method is called sensor grouping. Due to non-linearity and non-gaussianity of the problem itself, proposed solution is presented in the framework of non-linear Bayesian Estimation. For this purpose a detailedtheoretical background of the theory of Bayesian Tracking and Particle Filtering algorithm is given. | en_US |
dc.description.tableofcontents | Motivation | en_US |
dc.description.tableofcontents | Problem Statement | en_US |
dc.description.tableofcontents | Organisation | en_US |
dc.description.tableofcontents | BAYESIAN ESTIMATION TECHNIQUES | en_US |
dc.description.tableofcontents | State-Space Model | en_US |
dc.description.tableofcontents | System Dynamics | en_US |
dc.description.tableofcontents | Kalman Filter | en_US |
dc.description.tableofcontents | Grid Based Methods | en_US |
dc.description.tableofcontents | Extended Kalman Filter | en_US |
dc.description.tableofcontents | Particle Filter | en_US |
dc.description.tableofcontents | PARTICLE FILTER BASED TARGET TRACKING | en_US |
dc.description.tableofcontents | Description of Tracking Scenario | en_US |
dc.description.tableofcontents | Models | en_US |
dc.description.tableofcontents | Sensor Scheduling | en_US |
dc.identifier.citation | Özfidan, Ö. (2006). Cluster based sensors scheduling in a target tracking application with particle filter method. İstanbul: Işık Üniversitesi Fen Bilimleri Enstitüsü | en_US |
dc.identifier.uri | https://hdl.handle.net/11729/980 | |
dc.institutionauthor | Özfidan, Özgür | en_US |
dc.language.iso | en | en_US |
dc.publisher | Işık Üniversitesi | en_US |
dc.relation.publicationcategory | Tez | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject.lcc | TK7885.6 .O54 2006 | |
dc.subject.lcsh | Computer communication networks. | en_US |
dc.subject.lcsh | Computer science. | en_US |
dc.subject.lcsh | Computer software. | en_US |
dc.subject.lcsh | Information systems. | en_US |
dc.subject.lcsh | Software engineering. | en_US |
dc.subject.lcsh | Wireless sensor networks. | en_US |
dc.title | Cluster based sensors scheduling in a target tracking application with particle filter method | en_US |
dc.title.alternative | Parçacık süzgeçleme ile hedef izleme uygulamasında topak tabanlı algılayıcı çizelgeleme | en_US |
dc.type | Master Thesis | en_US |
dspace.entity.type | Publication |