Hierarchical b-Matching
dc.authorid | 0000-0002-3123-3451 | |
dc.authorid | 0000-0003-2062-6855 | |
dc.authorid | 0000-0002-2688-5703 | |
dc.contributor.author | Emek, Yuval | en_US |
dc.contributor.author | Kutten, Shay | en_US |
dc.contributor.author | Shalom, Mordechai | en_US |
dc.contributor.author | Zaks, Shmuel | en_US |
dc.date.accessioned | 2021-03-16T09:50:22Z | |
dc.date.available | 2021-03-16T09:50:22Z | |
dc.date.issued | 2021 | |
dc.department | Işık Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.department | Işık University, Faculty of Engineering, Department of Computer Engineering | en_US |
dc.description.abstract | A matching of a graph is a subset of edges no two of which share a common vertex, and a maximum matching is a matching of maximum cardinality. In a b-matching every vertex v has an associated bound bv, and a maximum b-matching is a maximum set of edges, such that every vertex v appears in at most bv of them. We study an extension of this problem, termed Hierarchical b-Matching. In this extension, the vertices are arranged in a hierarchical manner. At the first level the vertices are partitioned into disjoint subsets, with a given bound for each subset. At the second level the set of these subsets is again partitioned into disjoint subsets, with a given bound for each subset, and so on. We seek for a maximum set of edges, that obey all bounds (that is, no vertex v participates in more than bv edges, then all the vertices in one subset do not participate in more that subset’s bound of edges, and so on hierarchically). This is a sub-problem of the matroid matching problem which is NP -hard in general. It corresponds to the special case where the matroid is restricted to be laminar and the weights are unity. A pseudo-polynomial algorithm for the weighted laminar matroid matching problem is presented in [8]. We propose a polynomial-time algorithm for Hierarchical b-matching, i.e. the unweighted laminar matroid matching problem, and discuss how our techniques can possibly be generalized to the weighted case. | en_US |
dc.description.version | Publisher's Version | en_US |
dc.identifier.citation | Emek, Y., Kutten, S., Shalom, M. & Zaks, S. (2021). Hierarchical b-Matching. Paper presented at the Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12607, 189-202. doi:10.1007/978-3-030-67731-2_14 | en_US |
dc.identifier.doi | 10.1007/978-3-030-67731-2_14 | |
dc.identifier.endpage | 202 | |
dc.identifier.isbn | 9783030677305 | |
dc.identifier.isbn | 9783030677312 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.issn | 1611-3349 | |
dc.identifier.scopus | 2-s2.0-85101552365 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.startpage | 189 | |
dc.identifier.uri | https://hdl.handle.net/11729/3099 | |
dc.identifier.uri | http://dx.doi.org/10.1007/978-3-030-67731-2_14 | |
dc.identifier.volume | 12607 | |
dc.identifier.wos | WOS:000927597000014 | |
dc.identifier.wosquality | Q4 | |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.indekslendigikaynak | Conference Proceedings Citation Index – Science (CPCI-S) | en_US |
dc.institutionauthor | Shalom, Mordechai | en_US |
dc.institutionauthorid | 0000-0002-2688-5703 | |
dc.language.iso | en | en_US |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.publisher | Springer Science and Business Media Deutschland GmbH | en_US |
dc.relation.ispartof | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | b-matching | en_US |
dc.subject | Matching | en_US |
dc.subject | Matroids | en_US |
dc.subject | Combinatorial mathematics | en_US |
dc.subject | NP-hard | en_US |
dc.subject | Polynomial approximation | en_US |
dc.subject | Cardinalities | en_US |
dc.subject | Disjoint subsets | en_US |
dc.subject | Matching problems | en_US |
dc.subject | Maximum matchings | en_US |
dc.subject | Polynomial-time algorithms | en_US |
dc.subject | Pseudopolynomial algorithms | en_US |
dc.subject | Second level | en_US |
dc.subject | Sub-problems | en_US |
dc.subject | Set theory | en_US |
dc.title | Hierarchical b-Matching | en_US |
dc.type | Conference Object | en_US |
dspace.entity.type | Publication |