An extension of a boundedness result for singular integral operators

Yükleniyor...
Küçük Resim

Tarih

2016-03-30

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Polska Akademia Nauk

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

We study some operators originating from classical Littlewood–Paley the- ory. We consider their modification with respect to our discontinuous setup, where the un- derlying process is the product of a one-dimensional Brownian motion and a d-dimensional symmetric stable process. Two operators in focus are the G? and area functionals. Using the results obtained in our previous paper, we show that these operators are bounded on Lp. Moreover, we generalize a classical multiplier theorem by weakening its conditions on the tail of the kernel of singular integrals.

Açıklama

Anahtar Kelimeler

Multiplier, Symmetric stable process, Singular integrals, Probabilistic Littlewood–Paley functions, Area functional, G∗ functional, Inequality

Kaynak

Colloquium Mathematicum

WoS Q Değeri

Q4

Scopus Q Değeri

Q3

Cilt

145

Sayı

1

Künye

Karlı, D. (2016). An extension of a boundedness result for singular integral operators. Colloquium Mathematicum, 145(1), 15-33. doi:10.4064/cm6722-1-2016