A novel representation method for electromyogram (EMG) signal with predefined signature and envelope functional bank
dc.authorid | 0000-0002-7008-4778 | |
dc.authorid | 0000-0002-4597-0954 | |
dc.authorid | 0000-0003-1562-5524 | |
dc.contributor.author | Gürkan, Hakan | en_US |
dc.contributor.author | Güz, Ümit | en_US |
dc.contributor.author | Yarman, Bekir Sıddık Binboğa | en_US |
dc.date.accessioned | 2019-08-31T12:10:23Z | |
dc.date.accessioned | 2019-08-05T16:05:06Z | |
dc.date.available | 2019-08-31T12:10:23Z | |
dc.date.available | 2019-08-05T16:05:06Z | |
dc.date.issued | 2004 | |
dc.department | Işık Üniversitesi, Mühendislik Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü | en_US |
dc.department | Işık University, Faculty of Engineering, Department of Electrical-Electronics Engineering | en_US |
dc.description.abstract | In this paper, a new method to model EMG signals by means of "Predefined Signature and Envelope Functional Banks (PSEB)" is presented. Since EMG signals present quasi-stationary behavior, any EMG signal Xi is modeled by the form of Xi ? Ci?K?R on a frame bases in this work. In this model, ?R is defined as the Predefined Signature Vector (PSV); ?K is referred to as Predefined Envelope Vector (PEV) and Ci is called the Frame-Scaling Coefficient (FSC). EMG signal for each frame is described in terms of the two indices "R" and "K" of PSEB and the frame -scaling coefficient Ci. Furthermore, It has been shown that the new method of modeling provides significant data compression while preserving the clinical information in the reconstructed signal. | en_US |
dc.description.sponsorship | IEEE, Circuits & Syst Soc | en_US |
dc.description.version | Publisher's Version | en_US |
dc.identifier.citation | Gürkan, H., Güz, Ü. & Yarman, B. S. B. (2004). A novel representation method for electromyogram (EMG) signal with predefined signature and envelope functional bank. Paper presented at the Proceedings - IEEE International Symposium on Circuits and Systems, 4, 69-72. doi:10.1109/ISCAS.2004.1328942 | en_US |
dc.identifier.doi | 10.1109/ISCAS.2004.1328942 | |
dc.identifier.endpage | 72 | |
dc.identifier.isbn | 078038251X | |
dc.identifier.issn | 0271-4310 | |
dc.identifier.scopus | 2-s2.0-4344634328 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.startpage | 69 | |
dc.identifier.uri | https://hdl.handle.net/11729/2049 | |
dc.identifier.uri | https://dx.doi.org/10.1109/ISCAS.2004.1328942 | |
dc.identifier.volume | 4 | |
dc.identifier.wos | WOS:000223102600018 | |
dc.identifier.wosquality | N/A | |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.indekslendigikaynak | Conference Proceedings Citation Index – Science (CPCI-S) | en_US |
dc.institutionauthor | Gürkan, Hakan | en_US |
dc.institutionauthor | Güz, Ümit | en_US |
dc.institutionauthor | Yarman, Bekir Sıddık Binboğa | en_US |
dc.institutionauthorid | 0000-0002-7008-4778 | |
dc.institutionauthorid | 0000-0002-4597-0954 | |
dc.institutionauthorid | 0000-0003-1562-5524 | |
dc.language.iso | en | en_US |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | Proceedings - IEEE International Symposium on Circuits and Systems | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Clinical diagnosis | en_US |
dc.subject | Clinical information | en_US |
dc.subject | Correlation methods | en_US |
dc.subject | Data compression | en_US |
dc.subject | Eigenvalues and eigenfunctions | en_US |
dc.subject | Electrocardiography | en_US |
dc.subject | Electroencephalography | en_US |
dc.subject | Electromyogram signal | en_US |
dc.subject | Electromyography | en_US |
dc.subject | EMG signals | en_US |
dc.subject | Encoding | en_US |
dc.subject | Envelope functional bank | en_US |
dc.subject | Envelope functional banks | en_US |
dc.subject | Error analysis | en_US |
dc.subject | Frame scaling coefficient | en_US |
dc.subject | Least squares approximation | en_US |
dc.subject | Mathematical models | en_US |
dc.subject | Matrix algebra | en_US |
dc.subject | Muscle | en_US |
dc.subject | Muscles | en_US |
dc.subject | Neurology | en_US |
dc.subject | Neuromuscular | en_US |
dc.subject | Patient diagnosis | en_US |
dc.subject | Power capacitors | en_US |
dc.subject | Predefined envelope vector | en_US |
dc.subject | Pulse modulation | en_US |
dc.subject | Root mean square (RMS) errors | en_US |
dc.subject | Signal analysis | en_US |
dc.subject | Signal compression | en_US |
dc.subject | Signal processing | en_US |
dc.title | A novel representation method for electromyogram (EMG) signal with predefined signature and envelope functional bank | en_US |
dc.type | Conference Object | en_US |
dspace.entity.type | Publication |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- İsim:
- 2049.pdf
- Boyut:
- 222.6 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Publisher's Version