Quadratic programming for class ordering in rule induction
dc.authorid | 0000-0001-5838-4615 | |
dc.contributor.author | Yıldız, Olcay Taner | en_US |
dc.date.accessioned | 2015-07-14T11:00:06Z | |
dc.date.available | 2015-07-14T11:00:06Z | |
dc.date.issued | 2015-03-01 | |
dc.department | Işık Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.department | Işık University, Faculty of Engineering, Department of Computer Engineering | en_US |
dc.description.abstract | Separate-and-conquer type rule induction algorithms such as Ripper, solve a K>2 class problem by converting it into a sequence of K - 1 two-class problems. As a usual heuristic, the classes are fed into the algorithm in the order of increasing prior probabilities. Although the heuristic works well in practice, there is much room for improvement. In this paper, we propose a novel approach to improve this heuristic. The approach transforms the ordering search problem into a quadratic optimization problem and uses the solution of the optimization problem to extract the optimal ordering. We compared new Ripper (guided by the ordering found with our approach) with original Ripper (guided by the heuristic ordering) on 27 datasets. Simulation results show that our approach produces rulesets that are significantly better than those produced by the original Ripper. | en_US |
dc.description.version | Publisher's Version | en_US |
dc.description.version | Author Post Print | en_US |
dc.identifier.citation | Yıldız, O. T. (2015). Quadratic programming for class ordering in rule induction. Pattern Recognition Letters, 54, 63-68. doi:10.1016/j.patrec.2014.12.002 | en_US |
dc.identifier.doi | 10.1016/j.patrec.2014.12.002 | |
dc.identifier.endpage | 68 | |
dc.identifier.issn | 0167-8655 | |
dc.identifier.issn | 1872-7344 | |
dc.identifier.scopus | 2-s2.0-84921059303 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 63 | |
dc.identifier.uri | https://hdl.handle.net/11729/580 | |
dc.identifier.uri | http://dx.doi.org/10.1016/j.patrec.2014.12.002 | |
dc.identifier.volume | 54 | |
dc.identifier.wos | WOS:000349556800009 | |
dc.identifier.wosquality | Q2 | |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.indekslendigikaynak | Science Citation Index Expanded (SCI-EXPANDED) | en_US |
dc.institutionauthor | Yıldız, Olcay Taner | en_US |
dc.institutionauthorid | 0000-0001-5838-4615 | |
dc.language.iso | en | en_US |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.publisher | Elsevier Science BV | en_US |
dc.relation.ispartof | Pattern Recognition Letters | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Rule induction | en_US |
dc.subject | Quadratic programming | en_US |
dc.subject | Class ordering | en_US |
dc.subject | Classification Trees | en_US |
dc.subject | Algorithms | en_US |
dc.subject | Class ordering | en_US |
dc.subject | Heuristic ordering | en_US |
dc.subject | Optimal ordering | en_US |
dc.subject | Optimization problems | en_US |
dc.subject | Prior probability | en_US |
dc.subject | Quadratic optimization problems | en_US |
dc.subject | Rule induction algorithms | en_US |
dc.subject | Optimization | en_US |
dc.subject | Artificial intelligence | en_US |
dc.subject | Classification (of information) | en_US |
dc.subject | Classification rules | en_US |
dc.title | Quadratic programming for class ordering in rule induction | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication |