Laplacian eigenvectors of graphs: Perron-Frobenius and Faber-Krahn type theorems

dc.authorid0000-0002-9076-4893
dc.authorid0000-0002-5016-5191
dc.contributor.authorBıyıkoğlu, Türkeren_US
dc.contributor.authorLeydold, Josefen_US
dc.contributor.authorStadler, Peter F.en_US
dc.date.accessioned2020-04-14T09:02:24Z
dc.date.available2020-04-14T09:02:24Z
dc.date.issued2007
dc.departmentIşık Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümüen_US
dc.departmentIşık University, Faculty of Arts and Sciences, Department of Mathematicsen_US
dc.description.abstractEigenvectors of graph Laplacians have not, to date, been the subject of expository articles and thus they may seem a surprising topic for a book. The authors propose two motivations for this new LNM volume: (1) There are fascinating subtle differences between the properties of solutions of Schrödinger equations on manifolds on the one hand, and their discrete analogs on graphs. (2) “Geometric” properties of (cost) functions defined on the vertex sets of graphs are of practical interest for heuristic optimization algorithms. The observation that the cost functions of quite a few of the well-studied combinatorial optimization problems are eigenvectors of associated graph Laplacians has prompted the investigation of such eigenvectors. The volume investigates the structure of eigenvectors and looks at the number of their sign graphs (“nodal domains”), Perron components, graphs with extremal properties with respect to eigenvectors. The Rayleigh quotient and rearrangement of graphs form the main methodology.en_US
dc.description.versionPublisher's Versionen_US
dc.identifier.citationBıyıkoğlu, T., Leydold, J. & Stadler, P. F. (2007). Laplacian eigenvectors of graphs: Perron-Frobenius and Faber-Krahn type theorems. Lecture Notes in Mathematics. 1-119, doi:10.1007/978-3-540-73510-6_1en_US
dc.identifier.doi10.1007/978-3-540-73510-6_1
dc.identifier.endpage119
dc.identifier.isbn3540735097
dc.identifier.isbn9783540735090
dc.identifier.issn0075-8434
dc.identifier.issn1617-9692
dc.identifier.scopus2-s2.0-85072879616
dc.identifier.scopusqualityN/A
dc.identifier.startpage1
dc.identifier.urihttps://hdl.handle.net/11729/2302
dc.identifier.urihttp://dx.doi.org/10.1007/978-3-540-73510-6_1
dc.identifier.volume1915
dc.identifier.wosWOS:000248843700001
dc.identifier.wosqualityQ4
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakScience Citation Index Expanded (SCI-EXPANDED)en_US
dc.institutionauthorBıyıkoğlu, Türkeren_US
dc.language.isoenen_US
dc.peerreviewedYesen_US
dc.publicationstatusPublisheden_US
dc.publisherSpringer Verlagen_US
dc.relation.publicationcategoryKitap - Uluslararasıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.sourceLecture Notes in Mathematicsen_US
dc.subjectAlgebraic connectivityen_US
dc.subjectEigenvalueen_US
dc.subjectElementary landscapesen_US
dc.subjectFitness landscapesen_US
dc.subjectGraph in graph theoryen_US
dc.subjectMatricesen_US
dc.subjectMetastable statesen_US
dc.subjectNodal domainsen_US
dc.subjectRandom-energy modelen_US
dc.subjectSignless laplacianen_US
dc.subjectSolvable modelen_US
dc.subjectSpin-glassen_US
dc.titleLaplacian eigenvectors of graphs: Perron-Frobenius and Faber-Krahn type theoremsen_US
dc.typeBooken_US
dspace.entity.typePublication

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
2302.pdf
Boyut:
2.4 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Publisher's Version
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: