Comparison of image retargeting algorithms with Seam Carving method
dc.authorid | 0000-0001-7301-9085 | |
dc.contributor.advisor | Ekin, Emine | en_US |
dc.contributor.author | Miroğlu, Taylan | en_US |
dc.contributor.other | Işık Üniversitesi, Lisansüstü Eğitim Enstitüsü, Bilgisayar Mühendisliği Yüksek Lisans Programı | en_US |
dc.date.accessioned | 2023-08-07T12:20:54Z | |
dc.date.available | 2023-08-07T12:20:54Z | |
dc.date.issued | 2023-04-25 | |
dc.department | Işık Üniversitesi, Lisansüstü Eğitim Enstitüsü, Bilgisayar Mühendisliği Yüksek Lisans Programı | en_US |
dc.description | Text in English ; Abstract: English and Turkish | en_US |
dc.description | Includes bibliographical references (leaves 45-46) | en_US |
dc.description | x, 47 leaves | en_US |
dc.description.abstract | The rise of social media has made sharing photos and pictures more important than ever, both for personal and marketing purposes. This situation also caused the problem of converting the photos taken with the camera in a square format, where the width is higher than the height. To address this need, a recent study explored the use of the Seam Carving method to convert images to a square format while preserving their essential parts. The study compared two algorithms, Greedy and Dijkstra, in terms of processing time and consistency using a supervised image. The consistency comparison was carried out on five images, three of which were obtained from NRID, and two were created for the study. The five images were used to calculate the average consistency of the Dijkstra algorithm. In addition, 23 more images from NRID were used to compute the average consistency of the Greedy algorithm, resulting in a total of 28 images used in the analysis. The results showed that the Greedy algorithm had an average consistency that was 6.55% higher than the Dijkstra algorithm based on the five images. Furthermore, the Dijkstra algorithm took an average of 2,347% longer to process than the Greedy algorithm. The implications of these findings are significant for social media users and marketers alike. The Greedy algorithm can help maintain the essential elements of an image while making it suitable for different social media platforms. The study also highlights the importance of considering processing time when choosing an algorithm to use. Overall, this research demonstrates the potential of the Seam Carving method and provides valuable insights into the choice of algorithm for image manipulation. | en_US |
dc.description.abstract | Sosyal medyanın yükselişi, kişisel ve pazarlama amaçları için fotoğraf ve resim paylaşımını daha da önemli hale getirdi. Bu durum aynı zamanda, kamera ile çekilen ve genişliği yüksekliğinden daha fazla olan fotoğrafların kare formata dönüştürülmesi sorununu da beraberinde getirdi. Bu ihtiyacı karşılamak için son zamanlarda bir çalışma, resimleri özgün parçalarını koruyarak kare formata dönüştürmek için Seam Carving yönteminin kullanımını inceledi. Bu çalışmada, süpervize edilmiş bir görüntü üzerinde hem işlem süresi hem de tutarlılık açısından Greedy yaklaşım ve Dijkstra algoritması olmak üzere iki algoritma karşılaştırdı. Bu araştırmadaki tutarlılık karşılaştırmasında beş görüntü kullanıldı; üç tanesi NRID'den elde edilen ve iki tanesi bu çalışma için özel olarak oluşturulan beş görüntü üzerinde yapıldı. Beş görüntü, Dijkstra algoritmasının ortalama tutarlılığını hesaplamak için kullanıldı. Bunun yanı sıra, NRID'den 23 tane daha görüntü, Greedy algoritmasının ortalama tutarlılığını hesaplamak için kullanıldı. Bu araştırmanın analizinde toplamda 28 görüntü kullanıldı. Sonuçlar, beş farklı görüntüye dayanarak Greedy algoritmasının ortalama tutarlılığının Dijkstra algoritmasından %6,55 daha yüksek olduğunu gösterdi. Bunun yanı sıra, Dijkstra algoritmasına ait işlem süresinin Greedy algoritmasından %2.347 daha uzun sürdüğü ortaya çıktı. Bu bulguların sosyal medya kullanıcıları ve pazarlamacılar için önemli sonuçları vardır. Greedy algoritması, bir görüntünün temel öğelerini koruyarak farklı sosyal medya platformlarına uygun hale getirmeye yardımcı olabilir. Bu çalışma, görüntü yeniden boyutlandırma yöntemlerinden olan Seam Carving yönteminde algoritma seçiminde işlem süresinin dikkate alınmasının önemini vurgulamaktadır. Genel olarak, bu araştırma, Seam Carving yönteminin potansiyelini göstermektedir ve görüntü manipülasyonu için algoritma seçimi konusunda değerli bilgiler sağlamaktadır. | en_US |
dc.description.tableofcontents | Application of Image Retargeting Algorithms | en_US |
dc.description.tableofcontents | Auxiliaries, Libraries and Language | en_US |
dc.description.tableofcontents | Steps | en_US |
dc.description.tableofcontents | Preparing the Dataset | en_US |
dc.description.tableofcontents | 3-Dimensional Colored Image to 2-Dimensional Grayscale Image | en_US |
dc.description.tableofcontents | Laplacian Transform | en_US |
dc.description.tableofcontents | Finding The Lowest Energy Points – The Shortest Path | en_US |
dc.description.tableofcontents | First-level Greedy Approach | en_US |
dc.description.tableofcontents | Dijkstra Algorithm | en_US |
dc.description.tableofcontents | Marking Red – Removing Pixels | en_US |
dc.description.tableofcontents | Process Sequence for First-level Greedy Approach | en_US |
dc.description.tableofcontents | Process Sequence for Dijkstra Algorithm | en_US |
dc.description.tableofcontents | Intersection over Union (IoU) | en_US |
dc.description.tableofcontents | Mean Results and Comparison | en_US |
dc.description.tableofcontents | Visual Comparison with Other Methods | en_US |
dc.description.tableofcontents | Compared Laplacian filters | en_US |
dc.description.tableofcontents | Comparison of Optimized and Classical Greedy Approach | en_US |
dc.description.tableofcontents | The logic of Dijkstra Algorithm | en_US |
dc.description.tableofcontents | IoU of first-level greedy approach photo | en_US |
dc.description.tableofcontents | IoU of Dijkstra photo | en_US |
dc.description.tableofcontents | IoU of first-level greedy approach image | en_US |
dc.description.tableofcontents | IoU of Dijkstra image | en_US |
dc.description.tableofcontents | IoU of first-level greedy approach image in NRID (ours_11_aaa) | en_US |
dc.description.tableofcontents | IoU of Dijkstra image in NRID (ours_11_aaa) | en_US |
dc.description.tableofcontents | IoU of first-level greedy approach image in NRID (ours_14_aaa) | en_US |
dc.description.tableofcontents | IoU of Dijkstra image in NRID (ours_14_aaa) | en_US |
dc.description.tableofcontents | IoU of first-level greedy approach image in NRID (ours_16_aaa) | en_US |
dc.description.tableofcontents | IoU of Dijkstra image in NRID (ours_16_aaa) | en_US |
dc.description.tableofcontents | IoU of greedy approach | en_US |
dc.description.tableofcontents | IoU of Dijkstra | en_US |
dc.description.tableofcontents | Mean accuracy (IoU) of the all the image | en_US |
dc.description.tableofcontents | Run time and accuracy comparison of greedy approach and Dijkstra algorithm on photo | en_US |
dc.description.tableofcontents | Run time and accuracy comparison of greedy approach and Dijkstra algorithm on image | en_US |
dc.description.tableofcontents | Run time and accuracy comparison of greedy approach (v1 & v2) and Dijkstra algorithm on the image in NRID (ours_11_aaa) | en_US |
dc.description.tableofcontents | Run time and accuracy comparison of greedy approach (v1 & v2) and Dijkstra algorithm on the image in NRID (ours_14_aaa) | en_US |
dc.description.tableofcontents | Run time and accuracy comparison of greedy approach (v1 & v2) and Dijkstra algorithm on the image in NRID (ours_16_aaa) | en_US |
dc.description.tableofcontents | Run time and accuracy comparison of greedy approach (v2) and Dijkstra algorithm on the mean of all the images | en_US |
dc.description.tableofcontents | The 2-D Laplacian function (researchgate.net) | en_US |
dc.description.tableofcontents | The original and Laplacian filtered photos | en_US |
dc.description.tableofcontents | The original and Laplacian filtered images | en_US |
dc.description.tableofcontents | The original and Laplacian filtered images in NRID (ours_11_aaa) | en_US |
dc.description.tableofcontents | The original and Laplacian filtered images in NRID (ours_14_aaa) | en_US |
dc.description.tableofcontents | The original and Laplacian filtered images in NRID (ours_16_aaa) | en_US |
dc.description.tableofcontents | Greedy approach | en_US |
dc.description.tableofcontents | Greedy approach (Next Step) | en_US |
dc.description.tableofcontents | The logic of Dijkstra Algorithm | en_US |
dc.description.tableofcontents | Red marks on the original and Laplacian filtered photos with using greedy approach | en_US |
dc.description.tableofcontents | Red marks on the original and Laplacian filtered images with using greedy approach | en_US |
dc.description.tableofcontents | Red marks on the original and Laplacian filtered images in NRID (ours_11_aaa) with using greedy approach | en_US |
dc.description.tableofcontents | Why algorithm needs adjusting process before marking pixels –Step 1 | en_US |
dc.description.tableofcontents | Why algorithm needs adjusting process before marking pixels –Step 2 | en_US |
dc.description.tableofcontents | Why algorithm needs adjusting process before marking pixels –Step 3 | en_US |
dc.description.tableofcontents | Red marks on the original and Laplacian filtered photos with using Dijkstra algorithm | en_US |
dc.description.tableofcontents | Red marks on the original and Laplacian filtered images with using Dijkstra algorithm | en_US |
dc.description.tableofcontents | Red marks on the original and Laplacian filtered images in NRID (ours_11_aaa) with using Dijkstra algorithm | en_US |
dc.description.tableofcontents | Flowchart of the Algorithm | en_US |
dc.description.tableofcontents | The original and retargeted photo with greedy approach | en_US |
dc.description.tableofcontents | The original and retargeted photo with Dijkstra algorithm | en_US |
dc.description.tableofcontents | The original and retargeted image with greedy approach | en_US |
dc.description.tableofcontents | The original and retargeted image with Dijkstra algorithm | en_US |
dc.description.tableofcontents | The original and retargeted image with Greedy algorithm in NRID (ours_11_aaa) | en_US |
dc.description.tableofcontents | The original and retargeted image with Dijkstra algorithm in NRID (ours_11_aaa) | en_US |
dc.description.tableofcontents | The original and retargeted image with Greedy algorithm in NRID (ours_14_aaa) | en_US |
dc.description.tableofcontents | The original and retargeted image with Dijkstra algorithm in NRID (ours_14_aaa) | en_US |
dc.description.tableofcontents | The original and retargeted image with Greedy algorithm in NRID (ours_16_aaa) | en_US |
dc.description.tableofcontents | The original and retargeted image with Dijkstra algorithm in NRID (ours_16_aaa) | en_US |
dc.description.tableofcontents | Supervised photo | en_US |
dc.description.tableofcontents | Supervised image | en_US |
dc.description.tableofcontents | Supervised image in NRID (ours_11_aaa) | en_US |
dc.description.tableofcontents | Supervised image in NRID (ours_14_aaa) | en_US |
dc.description.tableofcontents | Supervised image in NRID (ours_16_aaa) | en_US |
dc.description.tableofcontents | Creating Polylines in AutoCAD for Getting Coordinates | en_US |
dc.description.tableofcontents | Visual representation of IoU of photo | en_US |
dc.description.tableofcontents | Visual representation of IoU of image | en_US |
dc.description.tableofcontents | Visual representation of IoU of image in NRID (ours_11_aaa) | en_US |
dc.description.tableofcontents | Visual representation of IoU of image in NRID (ours_14_aaa) | en_US |
dc.description.tableofcontents | Visual representation of IoU of image in NRID (ours_16_aaa) | en_US |
dc.description.tableofcontents | Cropped photo and image | en_US |
dc.description.tableofcontents | Stretched photo and image | en_US |
dc.description.tableofcontents | Cropped vs Stretched vs Greedy seam carving of photo | en_US |
dc.description.tableofcontents | Cropped vs Stretched vs Greedy seam carving of image | en_US |
dc.description.tableofcontents | Cropped vs Stretched vs Dijkstra seam carving of photo | en_US |
dc.description.tableofcontents | Cropped vs Stretched vs Dijkstra seam carving of image | en_US |
dc.description.tableofcontents | Cropped vs Stretched vs Greedy seam carving of photo | en_US |
dc.description.tableofcontents | Cropped vs Stretched vs Dijkstra seam carving of photo | en_US |
dc.description.tableofcontents | Cropped vs Stretched vs Greedy seam carving of image | en_US |
dc.description.tableofcontents | Cropped vs Stretched vs Dijkstra seam carving of image | en_US |
dc.description.tableofcontents | Greedy vs Dijkstra seam carving of photo | en_US |
dc.description.tableofcontents | Greedy vs Dijkstra seam carving of image | en_US |
dc.identifier.citation | Miroğlu, T. (2023). Comparison of image retargeting algorithms with Seam Carving method. İstanbul: Işık Üniversitesi Lisansüstü Eğitim Enstitüsü. | en_US |
dc.identifier.uri | https://hdl.handle.net/11729/5675 | |
dc.institutionauthor | Miroğlu, Taylan | en_US |
dc.institutionauthorid | 0000-0001-7301-9085 | |
dc.language.iso | en | en_US |
dc.publisher | Işık Üniversitesi | en_US |
dc.relation.publicationcategory | Tez | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | Seam Carving | en_US |
dc.subject | Dijkstra | en_US |
dc.subject | Greedy | en_US |
dc.subject | Image retargeting | en_US |
dc.subject | Image resizing | en_US |
dc.subject | Shortest path | en_US |
dc.subject | Resim yeniden hedefleme | en_US |
dc.subject | Resim boyutlandırma | en_US |
dc.subject | En kısa yol | en_US |
dc.subject.lcc | T357 .M57 C66 2023 | |
dc.subject.lcsh | Seam carving. | en_US |
dc.subject.lcsh | Dijkstra. | en_US |
dc.subject.lcsh | Greedy. | en_US |
dc.subject.lcsh | Image retargeting. | en_US |
dc.subject.lcsh | Image resizing. | en_US |
dc.subject.lcsh | Shortest path. | en_US |
dc.title | Comparison of image retargeting algorithms with Seam Carving method | en_US |
dc.title.alternative | Seam Carving yöntemi ile görüntü yeniden hedefleme algoritmalarının karşılaştırılması | en_US |
dc.type | Master Thesis | en_US |
dspace.entity.type | Publication |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- Comparison_of_image_retargeting_algorithms_with_Seam_Carving_method.pdf
- Boyut:
- 3.48 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- MasterThesis
Lisans paketi
1 - 1 / 1
Küçük Resim Yok
- İsim:
- license.txt
- Boyut:
- 1.44 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: