Temperature control in dissipative cavities by entangled dimers

Yükleniyor...
Küçük Resim

Tarih

2019-02-21

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Amer Chemical Soc

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

We show that the temperature of a cavity field can be drastically varied by its interaction with suitably entangled atom pairs (dimers) traversing the cavity under realistic atomic decoherence. To this end we resort to the hitherto untapped resource of naturally entangled dimers whose state can be simply controlled via molecular dissociation, collisions forming the dimer, or unstable dimers such as positronium. Depending on the chosen state of the dimer, the cavity-field mode can be driven to a steady-state temperature that is either much lower or much higher than the ambient temperature, despite adverse effects of cavity loss and atomic decoherence. Entangled dimers enable much broader range of cavity temperature control than single "phaseonium" atoms with coherently superposed levels. Such dimers are shown to constitute highly caloric fuel that can ensure high efficiency or power in photonic thermal engines. Alternatively, they can serve as controllable thermal baths for quantum simulation of energy exchange in photosynthesis or quantum annealing.

Açıklama

Anahtar Kelimeler

Single heat bath, Cooperative fluorescence, Quantum interference, Extracting work, Open system, Positronium, Thermodynamics, Collisions, Radiation, Coherence, Atoms, Quantum chemistry, Quantum entanglement, Temperature control, Dissipative cavities, Energy exchanges, Entangled atoms, High-efficiency, Molecular dissociation, Quantum annealing, Quantum simulations, Steady-state temperature, Dimers

Kaynak

Journal of Physical Chemistry C

WoS Q Değeri

Q2

Scopus Q Değeri

Q1

Cilt

123

Sayı

7

Künye

Dağ, C. B., Niedenzu, W., Özaydın, F., Müstecaplıoğlu, Ö. E. & Kurizki, G. (2019). Temperature control in dissipative cavities by entangled dimers. Journal of Physical Chemistry C, 123(7), 4035-4043. doi:10.1021/acs.jpcc.8b11445