Differentially private attribute selection for classification

Yükleniyor...
Küçük Resim

Tarih

2015-06-18

Yazarlar

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Işık Üniversitesi

Erişim Hakkı

info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivs 3.0 United States

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

Any study on processing or analyzing large data sets that contain personally sensitive data should conform against some form of privacy protection mechanism. Otherwise, malicious people can aceess these data sets to extract private information and use this private information in agency operations, blackmail, fraud or any other harmful actions. Importance and necessity of privacy preserving data mining is increasing day by day, hence public and government lawmakers, privacy advocates and the media are drawing more and more attention to this subject daily. This thesis proposes an approach to that selects features from a data set according to the differential privacy mechanism and implements this proposed solution on a popular data mining library called WEKA.
Büyük veriler üzerindeki çalışmalar ve analizler gizliliği, özellikle kişisel hassas bilgilerin gizliliğini gözetmek durumundadır. Gerekli koruma önlemleri alınmazsa kötü niyetli kişiler kritik bilgilere ulaşabilir ve bunlar şantaj, dolandırıcılık gibi çeşitli zararlı amaçlı için kullanabilir. Veri güvenliği kavramının önemi ve gerekliliği günden güne artmaktadır ve halk, hükümet yetkilileri ve medya bu kavrama giderek artan bir ilgi göstermektedir. Bu tez yaygın kullanılan bir veri madenciliği kütüphanesi olan WEKA üzerinde, ayrımsal mahremiyet kavramını veri madenciliğinin bir alanı olan özellik seçimi yönünden ele alıp veri güvenliği performansını geliştiren bir yaklaşım sunmaktadır.

Açıklama

Text in English ; Abstract: English and Turkish
Includes bibliographical references (leaves 36-38)
iii, 41 leaves

Anahtar Kelimeler

Kaynak

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye

Var, E. (2015). Differentially private attribute selection for classification. İstanbul: Işık Üniversitesi Fen Bilimleri Enstitüsü.