Mental disorder and suicidal ideation detection from social media using deep neural networks

Yükleniyor...
Küçük Resim

Tarih

2024-12

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer

Erişim Hakkı

info:eu-repo/semantics/openAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

Depression and suicidal ideation are global reasons for life-threatening injury and death. Mental disorders have increased especially among young people in recent years, and early detection of those cases can prevent suicide attempts. Social media platforms provide users with an anonymous space to interact with others, making them a secure environment to discuss their mental disorders. This paper proposes a solution to detect depression/suicidal ideation using natural language processing and deep learning techniques. We used Transformers and a unique model to train the proposed model and applied it to three diferent datasets: SuicideDetection, CEASEv2.0, and SWMH. The proposed model is evaluated using the accuracy, precision, recall, and ROC curve. The proposed model outperforms the state-of-theart in the SuicideDetection and CEASEv2.0 datasets, achieving F1 scores of 0.97 and 0.75, respectively. However, in the SWMH data set, the proposed model is 4% points behind the state-of-the-art precision providing the F1 score of 0.68. In the real world, this project could help psychologists in the early detection of depression and suicidal ideation for a more efcient treatment. The proposed model achieves state-of-the-art performance in two of the three datasets, so they could be used to develop a screening tool that could be used by mental health professionals or individuals to assess their own risk of suicide. This could lead to early intervention and treatment, which could save lives.

Açıklama

Open access funding provided by the Scientific and Technological Research Council of T\u00FCrkiye (T\u00DCB\u0130TAK).

Anahtar Kelimeler

Suicidal ideation detection, Social media content, Word embedding, Deep neural network, BERT transformers, Depression

Kaynak

Journal of Computational Social Science

WoS Q Değeri

Q2

Scopus Q Değeri

Q2

Cilt

7

Sayı

3

Künye

Ezerceli, Ö. & Dehkharghani, R. (2024). Mental disorder and suicidal ideation detection from social media using deep neural networks. Journal of Computational Social Science, 7(3), 2277-2307. doi:10.1007/s42001-024-00307-1