Automated diagnosis of Alzheimer’s Disease using OCT and OCTA: a systematic review
dc.authorid | 0000-0001-6309-4524 | |
dc.authorid | 0000-0002-8649-6013 | |
dc.authorid | 0009-0004-3598-4326 | |
dc.authorid | 0000-0001-7013-5451 | |
dc.authorid | 0000-0001-8619-8078 | |
dc.authorid | 0000-0002-4364-934X | |
dc.contributor.author | Turkan, Yasemin | en_US |
dc.contributor.author | Tek, Faik Boray | en_US |
dc.contributor.author | Arpacı, Fatih | en_US |
dc.contributor.author | Arslan, Ozan | en_US |
dc.contributor.author | Toslak, Devrim | en_US |
dc.contributor.author | Bulut, Mehmet | en_US |
dc.contributor.author | Yaman, Aylin | en_US |
dc.date.accessioned | 2025-08-19T10:57:24Z | |
dc.date.available | 2025-08-19T10:57:24Z | |
dc.date.issued | 2024-08-06 | |
dc.department | Işık Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.department | Işık University, Faculty of Engineering and Natural Sciences, Department of Computer Engineering | en_US |
dc.description | This study was supported by Scientific and Technological Research Council of Turkey (TUBITAK) under the Grant Number 122E509. The authors thank to TUBITAK for their supports. | en_US |
dc.description.abstract | Retinal optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA) have emerged as promising, non-invasive, and cost-effective modalities for the early diagnosis of Alzheimer's disease (AD). However, a comprehensive review of automated deep learning techniques for diagnosing AD or mild cognitive impairment (MCI) using OCT/OCTA data is lacking. We addressed this gap by conducting a systematic review using the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines. We systematically searched databases, including Scopus, PubMed, and Web of Science, and identified 16 important studies from an initial set of 4006 references. We then analyzed these studies through a structured framework, focusing on the key aspects of deep learning workflows for AD/MCI diagnosis using OCT-OCTA. This included dataset curation, model training, and validation methodologies. Our findings indicate a shift towards employing end-to-end deep learning models to directly analyze OCT/OCTA images in diagnosing AD/MCI, moving away from traditional machine learning approaches. However, we identified inconsistencies in the data collection methods across studies, leading to varied outcomes. We emphasize the need for longitudinal studies on early AD and MCI diagnosis, along with further research on interpretability tools to enhance model accuracy and reliability for clinical translation. | en_US |
dc.description.sponsorship | Türkiye Bilimsel ve Teknolojik Araştırma Kurumu | en_US |
dc.description.version | Publisher's Version | en_US |
dc.identifier.citation | Turkan, Y., Tek, F. B., Arpacı, F., Arslan, O., Toslak, D., Bulut, M. & Yaman, A. (2024). Automated diagnosis of Alzheimer’s Disease using OCT and OCTA: a systematic review. IEEE Access, 12, 104031-104051. doi:10.1109/ACCESS.2024.3434670 | en_US |
dc.identifier.doi | 10.1109/ACCESS.2024.3434670 | |
dc.identifier.endpage | 104051 | |
dc.identifier.issn | 2169-3536 | |
dc.identifier.scopus | 2-s2.0-85200200309 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 104031 | |
dc.identifier.uri | https://hdl.handle.net/11729/6626 | |
dc.identifier.uri | https://doi.org/10.1109/ACCESS.2024.3434670 | |
dc.identifier.volume | 12 | |
dc.identifier.wos | WOS:001286627200001 | |
dc.identifier.wosquality | Q2 | |
dc.indekslendigikaynak | Scopus | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Science Citation Index Expanded (SCI-EXPANDED) | en_US |
dc.institutionauthor | Turkan, Yasemin | en_US |
dc.institutionauthorid | 0000-0001-6309-4524 | |
dc.language.iso | en | en_US |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | IEEE Access | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Alzheimer's disease | en_US |
dc.subject | Cognitive impairment | en_US |
dc.subject | Deep learning | en_US |
dc.subject | Dementia | en_US |
dc.subject | Neural networks | en_US |
dc.subject | Optical coherence tomography | en_US |
dc.subject | Optical coherence tomography angiography | en_US |
dc.subject | Retinal imaging | en_US |
dc.subject | Angiography | en_US |
dc.subject | Clinical research | en_US |
dc.subject | Cost effectiveness | en_US |
dc.subject | Neurodegenerative diseases | en_US |
dc.subject | Ophthalmology | en_US |
dc.subject | Alzheimer | en_US |
dc.subject | Biomedical imaging | en_US |
dc.subject | Cognitive neurosciences | en_US |
dc.subject | Retina | en_US |
dc.subject | Systematic | en_US |
dc.subject | Optical tomography | en_US |
dc.subject | Healthy-subjects | en_US |
dc.subject | Segmentation | en_US |
dc.subject | Biomarkers | en_US |
dc.subject | MR | en_US |
dc.title | Automated diagnosis of Alzheimer’s Disease using OCT and OCTA: a systematic review | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- Automated_Diagnosis_of_Alzheimers_Disease_Using_OCT_and_OCTA_A_Systematic_Review.pdf
- Boyut:
- 5.04 MB
- Biçim:
- Adobe Portable Document Format
Lisans paketi
1 - 1 / 1
Küçük Resim Yok
- İsim:
- license.txt
- Boyut:
- 1.17 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: