EEG signal compression based on classified signature and envelope vector sets
dc.authorid | 0000-0002-7008-4778 | |
dc.authorid | 0000-0002-4597-0954 | |
dc.authorid | 0000-0003-1562-5524 | |
dc.contributor.author | Gürkan, Hakan | en_US |
dc.contributor.author | Güz, Ümit | en_US |
dc.contributor.author | Yarman, Bekir Sıddık Binboğa | en_US |
dc.date.accessioned | 2020-03-11T04:27:28Z | |
dc.date.available | 2020-03-11T04:27:28Z | |
dc.date.issued | 2007 | |
dc.department | Işık Üniversitesi, Mühendislik Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü | en_US |
dc.department | Işık University, Faculty of Engineering, Department of Electrical-Electronics Engineering | en_US |
dc.description.abstract | In this paper, a novel method to compress ElectroEncephaloGram (EEG) Signal is proposed. The proposed method is based on the generation Classified Signature and Envelope Vector Sets (CSEVS) by using an effective k-means clustering algorithm. In this work on a frame basis, any EEG signal is modeled by multiplying three parameters as called the Classified Signature Vector, Classified Envelope Vector, and Frame-Scaling Coefficient. In this case, EEG signal for each frame is described in terms of the two indices R and K of CSEVS and the frame-scaling coefficient. The proposed method is assessed through the use of root-mean-square error (RMSE) and visual inspection measures. The proposed method achieves good compression ratios with low level reconstruction error while preserving diagnostic information in the reconstructed EEG signal. | en_US |
dc.description.sponsorship | European Circuit Society (ECS) | en_US |
dc.description.sponsorship | IEEE Circuits and Systems Society | en_US |
dc.description.sponsorship | Institute of Electrical and Electronics Engineering (IEEE) | en_US |
dc.description.sponsorship | Ministerio de Educacion y Ciencia | en_US |
dc.description.sponsorship | Universidad de Sevilla | en_US |
dc.description.version | Publisher's Version | en_US |
dc.identifier.citation | Gürkan, H., Güz, Ü. & Yarman, B. S. B. (2007). EEG signal compression based on classified signature and envelope vector sets. Paper presented at the 2007 18th European Conference on Circuit Theory and Design, 420-423. doi:10.1109/ECCTD.2007.4529622 | en_US |
dc.identifier.doi | 10.1109/ECCTD.2007.4529622 | |
dc.identifier.endpage | 423 | |
dc.identifier.isbn | 9781424413416 | |
dc.identifier.isbn | 9781424413423 | |
dc.identifier.isbn | 1424413427 | |
dc.identifier.scopus | 2-s2.0-49749147474 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.startpage | 420 | |
dc.identifier.uri | https://hdl.handle.net/11729/2279 | |
dc.identifier.uri | http://dx.doi.org/10.1109/ECCTD.2007.4529622 | |
dc.identifier.wos | WOS:000258708400102 | |
dc.identifier.wosquality | N/A | |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.indekslendigikaynak | Conference Proceedings Citation Index – Science (CPCI-S) | en_US |
dc.institutionauthor | Gürkan, Hakan | en_US |
dc.institutionauthor | Güz, Ümit | en_US |
dc.institutionauthorid | 0000-0002-7008-4778 | |
dc.institutionauthorid | 0000-0002-4597-0954 | |
dc.language.iso | en | en_US |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.publisher | IEEE Computer Society | en_US |
dc.relation.ispartof | 2007 18th European Conference on Circuit Theory and Design | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Biomedical signal processing | en_US |
dc.subject | Brain modeling | en_US |
dc.subject | Circuit theory | en_US |
dc.subject | Classified envelope vector | en_US |
dc.subject | Classified signature and envelope vector sets | en_US |
dc.subject | Classified signature vector | en_US |
dc.subject | Clustering algorithms | en_US |
dc.subject | Computational complexity | en_US |
dc.subject | Computer science | en_US |
dc.subject | Data compression | en_US |
dc.subject | Diagnostic information | en_US |
dc.subject | Educational institutions | en_US |
dc.subject | EEG signal compression | en_US |
dc.subject | EEG signals | en_US |
dc.subject | Electric variables measurement | en_US |
dc.subject | Electrocardiography | en_US |
dc.subject | Electroencephalogram signal | en_US |
dc.subject | Electroencephalogram signals | en_US |
dc.subject | Electroencephalography | en_US |
dc.subject | Envelope vector sets | en_US |
dc.subject | Error reconstruction | en_US |
dc.subject | Frame-scaling coefficient | en_US |
dc.subject | Inspection | en_US |
dc.subject | K-means clustering | en_US |
dc.subject | K-means clustering algorithm | en_US |
dc.subject | Mean square error | en_US |
dc.subject | Mean square error methods | en_US |
dc.subject | Medical signal processing | en_US |
dc.subject | Monitoring | en_US |
dc.subject | Reconstruction error | en_US |
dc.subject | Root mean square errors | en_US |
dc.subject | Root-mean-square error | en_US |
dc.subject | Scaling coefficients | en_US |
dc.subject | Signal compression | en_US |
dc.subject | Signal reconstruction | en_US |
dc.subject | Signature vectors | en_US |
dc.subject | Speech | en_US |
dc.subject | Three parameters | en_US |
dc.subject | Vectors | en_US |
dc.subject | Visual inspection | en_US |
dc.subject | Visual inspection measures | en_US |
dc.title | EEG signal compression based on classified signature and envelope vector sets | en_US |
dc.type | Conference Object | en_US |
dspace.entity.type | Publication |