Assessing ChatGPT's accuracy in dyslexia inquiry
dc.authorid | 0009-0007-8239-8604 | |
dc.authorid | 0009-0001-4214-8738 | |
dc.contributor.author | Eroğlu, Günet | en_US |
dc.contributor.author | Harb, Mhd Raja Abou | en_US |
dc.date.accessioned | 2025-08-22T10:23:46Z | |
dc.date.available | 2025-08-22T10:23:46Z | |
dc.date.issued | 2024 | |
dc.department | Işık Üniversitesi, Lisansüstü Eğitim Enstitüsü, Bilgisayar Mühendisliği Yüksek Lisans Programı | en_US |
dc.department | Işık University, School of Graduate Studies, Master’s Program in Computer Engineering | en_US |
dc.description | TUBITAK 122E085 | en_US |
dc.description.abstract | Dyslexia poses challenges in accessing reliable information, crucial for affected individuals and their families. Leveraging chatbot technology offers promise in this regard. This study evaluates the OpenAI Assistant's precision in addressing dyslexia-related inquiries. Three hundred questions commonly posed by parents were categorized and presented to the Assistant. Expert evaluation of responses, graded on accuracy and completeness, yielded consistently high scores (median=5). Descriptive questions scored higher (average=4.9568) than yes/no questions (average=4.8957), indicating potential response challenges. Statistical analysis highlighted the significance of question specificity in response quality. Despite occasional difficulties, the Assistant demonstrated adaptability and reliability in providing accurate dyslexia-related information. | en_US |
dc.description.sponsorship | Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) | en_US |
dc.description.version | Publisher's Version | en_US |
dc.identifier.citation | Eroğlu, G. & Harb, M. R. A. (2024). Assessing ChatGPT's accuracy in dyslexia inquiry. Paper presented at the TIPTEKNO 2024 - Medical Technologies Congress, Proceedings, 1-4. doi:10.1109/TIPTEKNO63488.2024.10755435 | en_US |
dc.identifier.doi | 10.1109/TIPTEKNO63488.2024.10755435 | |
dc.identifier.endpage | 4 | |
dc.identifier.isbn | 9798331529819 | |
dc.identifier.isbn | 9798331529826 | |
dc.identifier.issn | 2687-7775 | |
dc.identifier.scopus | 2-s2.0-85212668429 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.startpage | 1 | |
dc.identifier.uri | https://hdl.handle.net/11729/6644 | |
dc.identifier.uri | https://doi.org/10.1109/TIPTEKNO63488.2024.10755435 | |
dc.identifier.wos | WOS:001454367500055 | |
dc.identifier.wosquality | N/A | |
dc.indekslendigikaynak | Scopus | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Conference Proceedings Citation Index – Science (CPCI-S) | en_US |
dc.institutionauthor | Harb, Mhd Raja Abou | en_US |
dc.institutionauthorid | 0009-0001-4214-8738 | |
dc.language.iso | en | en_US |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | TIPTEKNO 2024 - Medical Technologies Congress, Proceedings | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Öğrenci | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Artificial intelligence | en_US |
dc.subject | ChatGPT | en_US |
dc.subject | Deep learning | en_US |
dc.subject | Dyslexia | en_US |
dc.subject | Large language model | en_US |
dc.subject | Natural language processing | en_US |
dc.subject | Ambient intelligence | en_US |
dc.subject | Modeling languages | en_US |
dc.subject | Natural language processing systems | en_US |
dc.subject | Chatbots | en_US |
dc.subject | Dyslexium | en_US |
dc.subject | Expert evaluation | en_US |
dc.subject | Language model | en_US |
dc.subject | Language processing | en_US |
dc.subject | Natural languages | en_US |
dc.subject | Contrastive learning | en_US |
dc.title | Assessing ChatGPT's accuracy in dyslexia inquiry | en_US |
dc.type | Conference Object | en_US |
dspace.entity.type | Publication | en_US |