Learning to rank

Yükleniyor...
Küçük Resim

Tarih

2011-04-28

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Işık Üniversitesi

Erişim Hakkı

info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivs 3.0 United States

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

The web has grown so rapidly in the last decade and it brought the need for proper ranking. Learning to rank (LTR) is the collection of machine learning technolo- gies that construct a ranking model using training data. The model can sort documents according to their degrees of relevance or preference. In this thesis, we introduce LTR technologies and divide them into three ap- proaches: the point-wise, pair-wise and list-wise. We review the theoritical aspects of each category and introduce the representative algorithms of them. We also introduce a new LTR method GRwC which uses classifîcation and graph algorithms. We reduce the ranking problem to a two class classifîcation problem and apply KNN algorithm on a modified LTR dataset. We compared it with the popular ranking algorithm RankingSVM. Experiments on the well-known ranking datasets show that our proposed method gives slightly worse results than RankingSVM.
ıralama öğrenimi örnek verileri kullanarak bunlardan bir sıralama modeli oluşturan makine öğrenimi metotlarıdır. Bu model dokümanları önemine ya da uygunluğuna bağlı olarak sıralayabilir. Birçok Bilgiye Erişim teknolojisinin temelinde sıralama vardır. Bu yüzden Sıralama öğrenimi teknolojisi ile varolan bu teknolojiler daha da iyileştirilebilir. Sıralama öğrenimi son yıllarda artan bir popülariteye sahip olmuştur. Bunun temel sebebi Sıralama öğrenimi metotlarının arama motorları tarafından kullanılmaya başlanmış olmasıdır. Büyük arama motoru şirketleri son zamanlarda bir çok Sıralama öğrenimi algoritmaları geliştirmiş ve bu algoritmaları arama sistemlerinde kullanarak iyi sonuçlar almışlardır. Bu tezde, Sıralama öğrenimi teknolojilerini inceledik ve üç ayrı kategoriye ayırdık: nokta-bazlı, çift-bazlı ve liste-bazlı yaklaşımlar. Ayrıca yeni bir Sıralama öğrenimi algoritması tasarlayıp bunu popüler bir algoritma olan RankingSVM ile karşılatırdık.

Açıklama

Text in English ; Abstract: English and Turkish
Includes bibliographical references (leaves 37-42)
ix, 43 leaves

Anahtar Kelimeler

Algorithms, Machine learning

Kaynak

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye

Kılıç, Y. O. (2011). Learning to rank. İstanbul: Işık Üniversitesi Fen Bilimleri Enstitüsü.