An incremental model selection algorithm based on cross-validation for finding the architecture of a Hidden Markov model on hand gesture data sets
dc.authorid | 0000-0003-2225-7491 | |
dc.authorid | 0000-0001-5838-4615 | |
dc.contributor.author | Ulaş, Aydın | en_US |
dc.contributor.author | Yıldız, Olcay Taner | en_US |
dc.date.accessioned | 2019-07-31T13:40:08Z | |
dc.date.available | 2019-07-31T13:40:08Z | |
dc.date.issued | 2009-12-13 | |
dc.department | Işık Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.department | Işık University, Faculty of Engineering, Department of Computer Engineering | en_US |
dc.description.abstract | In a multi-parameter learning problem, besides choosing the architecture of the learner, there is the problem of finding the optimal parameters to get maximum performance. When the number of parameters to be tuned increases, it becomes infeasible to try all the parameter sets, hence we need an automatic mechanism to find the optimum parameter setting using computationally feasible algorithms. In this paper, we define the problem of optimizing the architecture of a Hidden Markov Model (HMM) as a state space search and propose the MSUMO (Model Selection Using Multiple Operators) framework that incrementally modifies the structure and checks for improvement using cross-validation. There are five variants that use forward/backward search, single/multiple operators, and depth-first/breadth-first search. On four hand gesture data sets, we compare the performance of MSUMO with the optimal parameter set found by exhaustive search in terms of expected error and computational complexity. | en_US |
dc.description.sponsorship | Cal State University | en_US |
dc.description.sponsorship | Association for Machine Learning and Applications | en_US |
dc.description.sponsorship | University of Louisville | en_US |
dc.description.version | Publisher's Version | en_US |
dc.identifier.citation | Ulaş, A. & Yıldız, O. T. (2009). An incremental model selection algorithm based on cross-validation for finding the architecture of a hidden markov model on hand gesture data sets. Paper presented at the 8th International Conference on Machine Learning and Applications, 170-177. doi:10.1109/ICMLA.2009.91 | en_US |
dc.identifier.doi | 10.1109/ICMLA.2009.91 | |
dc.identifier.endpage | 177 | |
dc.identifier.isbn | 9780769539263 | |
dc.identifier.scopus | 2-s2.0-77950895047 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.startpage | 170 | |
dc.identifier.uri | https://hdl.handle.net/11729/1668 | |
dc.identifier.uri | http://dx.doi.org/10.1109/ICMLA.2009.91 | |
dc.identifier.wos | WOS:000291011600024 | |
dc.identifier.wosquality | N/A | |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.indekslendigikaynak | Conference Proceedings Citation Index – Science (CPCI-S) | en_US |
dc.institutionauthor | Yıldız, Olcay Taner | en_US |
dc.institutionauthorid | 0000-0001-5838-4615 | |
dc.language.iso | en | en_US |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | 8th International Conference on Machine Learning and Applications | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Hidden Markov model | en_US |
dc.subject | Model selection | en_US |
dc.subject | Cross-validation | en_US |
dc.subject | Automatic mechanisms | en_US |
dc.subject | Data sets | en_US |
dc.subject | Exhaustive search | en_US |
dc.subject | Feasible algorithms | en_US |
dc.subject | Hand gesture | en_US |
dc.subject | Incremental models | en_US |
dc.subject | Multiparameters | en_US |
dc.subject | Multiple operator | en_US |
dc.subject | Optimal parameter | en_US |
dc.subject | Optimum parameters | en_US |
dc.subject | Parameter set | en_US |
dc.subject | State space search | en_US |
dc.subject | Computational complexity | en_US |
dc.subject | Mathematical operators | en_US |
dc.subject | Optimization | en_US |
dc.subject | Learning systems | en_US |
dc.subject | Hidden Markov models | en_US |
dc.subject | Machine learning | en_US |
dc.subject | Computer architecture | en_US |
dc.subject | Machine learning algorithms | en_US |
dc.subject | Data engineering | en_US |
dc.subject | Graphical models | en_US |
dc.subject | Bayesian methods | en_US |
dc.subject | Application software | en_US |
dc.subject | State-space methods | en_US |
dc.subject | Learning (artificial intelligence) | en_US |
dc.subject | Tree searching | en_US |
dc.subject | Incremental model selection algorithm | en_US |
dc.subject | Hand gesture data sets | en_US |
dc.subject | Multiparameter learning problem | en_US |
dc.subject | State space search | en_US |
dc.subject | Forward/backward search | en_US |
dc.subject | Single/multiple operators | en_US |
dc.subject | Depth-first/breadth-first search | en_US |
dc.title | An incremental model selection algorithm based on cross-validation for finding the architecture of a Hidden Markov model on hand gesture data sets | en_US |
dc.type | Conference Object | en_US |
dspace.entity.type | Publication |