Comparison between Turkish and Jordan standards from geotechnical earthquake engineering aspects

dc.contributor.advisorEtminan, Ehsanen_US
dc.contributor.authorHawa, Shafeeq Mohammaden_US
dc.contributor.otherIşık Üniversitesi, Lisansüstü Eğitim Enstitüsü, İnşaat Mühendisliği Yüksek Lisans Programıen_US
dc.date.accessioned2024-03-13T16:40:34Z
dc.date.available2024-03-13T16:40:34Z
dc.date.issued2024-01-31
dc.departmentIşık Üniversitesi, Lisansüstü Eğitim Enstitüsü, İnşaat Mühendisliği Yüksek Lisans Programıen_US
dc.descriptionText in English ; Abstract: English and Turkishen_US
dc.descriptionIncludes bibliographical references (leaves 133-137)en_US
dc.descriptionxix, 138 leavesen_US
dc.description.abstractThis thesis focuses on a comparative analysis of geotechnical earthquake engineering standards in Turkey and Jordan. The importance lies in ensuring that these standards are safe and economically viable, meeting each country's specific geotechnical and ground motion requirements. The study comprehensively examines both nations' earthquake and ground motion characteristics, reviewing relevant papers. The research is organized into six chapters, including recommendations. The thesis delves into the evolution of standards in both countries, considering feedback from researchers and the impact of past earthquakes on human life and infrastructure. It also explores the geotechnical earthquake phenomena resulting from earthquakes, such as landslides and liquefaction. The study reveals differences in codes due to variations in geological conditions, soil properties, and seismic locations. However, it also identifies noteworthy similarities. Additionally, the research analyzes the impact of earthquakes on soil by simulating two seismic events: the Düzce earthquake in Turkey and the Dead Sea earthquake in Jordan. PLAXIS 3D software, as a finite element method, is employed to observe deformations in the mesh, foundation, and piles, providing insights into the effects of seismic activity on these structural elements. The study emphasizes that Turkey encounters more frequent ground motion events than Jordan, and earthquakes in Turkey demonstrate a higher peak ground acceleration. Furthermore, even though Jordan experiences fewer earthquakes, the potential impact could be severe in the event of their occurrence. The similarities in earthquake effects identified through PLAXIS analysis indicate the presence of high peak ground acceleration, posing a significant risk in Turkey. This risk extends to Jordan, particularly during moderate earthquakes. This observation sheds light on why Jordan may have implemented stringent requirements in its building codes, aligning with the standards set by Turkey in some sections.en_US
dc.description.abstractBu tez, Türkiye ve Ürdün'deki geoteknik deprem mühendisliği standartlarının karşılaştırmalı analizine odaklanmaktadır. Önemli olan, bu standartların güvenli ve ekonomik açıdan uygulanabilir olmasını, her ülkenin kendine özgü geoteknik ve yer hareketi gereksinimlerini karşılamasını sağlamaktır. Bu çalışma, ilgili belgeleri gözden geçirerek her iki ülkenin deprem ve yer hareketi özelliklerini kapsamlı bir şekilde inceliyor. Bu araştırma öneriler de dahil olmak üzere altı bölüm halinde düzenlenmiştir. Tez, araştırmacılardan gelen geri bildirimleri ve geçmiş depremlerin insan yaşamı ve altyapı üzerindeki etkisini dikkate alarak her iki ülkedeki standartların gelişimini incelemektedir. Ayrıca heyelan ve zemin sıvılaşma gibi depremlerden kaynaklanan jeoteknik deprem olaylarını da araştırmaktadır. Bu çalışma, jeolojik koşullar, toprak özellikleri ve sismik konumlardaki değişiklikler nedeniyle kodlardaki farklılıkları ortaya koymaktadır. Ancak aynı zamanda dikkate değer benzerlikleri de tanımlar. Araştırma ayrıca iki sismik olayı simüle ederek depremlerin toprak üzerindeki etkisini analiz ediyor: Türkiye'deki Düzce depremi ve Ürdün'deki Ölü Deniz depremi. PLAXIS 3D yazılımı, sonlu elemanlar yöntemi olarak kafes, temel ve kazıklardaki deformasyonları gözlemlemek için kullanılır ve sismik aktivitenin bu yapısal elemanlar üzerindeki etkilerine dair içgörü sağlar. Çalışma, Türkiye'nin Ürdün'e göre daha sık yer hareketi olaylarıyla karşılaştığını ve Türkiye'deki depremlerin daha yüksek pik yer ivmesi gösterdiğini vurguluyor. Ayrıca, Ürdün'de daha az deprem yaşansa da, depremlerin meydana gelmesi halinde potansiyel etki daha şiddetli olabilir. PLAXIS analiziyle tespit edilen deprem etkilerindeki benzerlikler, Türkiye'de önemli bir risk oluşturan yüksek pik yer ivmesinin varlığına işaret etmektedir. Bu risk, özellikle orta dereceli depremler sırasında Ürdün'e kadar uzanmaktadır. Bu gözlem, Ürdün'ün inşaat mevzuatında neden bazı bölümlerde Türkiye'nin belirlediği standartlara uygun olarak katı gereklilikler uygulamış olabileceğine ışık tutuyor.en_US
dc.description.tableofcontentsGeotechnical Earthquake Engineering Fundamentalsen_US
dc.description.tableofcontentsCauses of Earthquakeen_US
dc.description.tableofcontentsPlate Boundariesen_US
dc.description.tableofcontentsFaultsen_US
dc.description.tableofcontentsSeismic Wavesen_US
dc.description.tableofcontentsSize of Earthquakeen_US
dc.description.tableofcontentsOverview of Seismic Hazards and Soil Dynamicsen_US
dc.description.tableofcontentsGround Shakingen_US
dc.description.tableofcontentsLiquefactionen_US
dc.description.tableofcontentsLandslidesen_US
dc.description.tableofcontentsPrevious Research on Geotechnical Earthquake Engineering in Turkey and Jordanen_US
dc.description.tableofcontentsPrevious Research on Geotechnical Earthquake Engineering in Turkeyen_US
dc.description.tableofcontentsPrevious Research on Geotechnical Earthquake Engineering in Jordanen_US
dc.description.tableofcontentsEARTHQUAKE HISTORY FOR JORDAN AND TURKEYen_US
dc.description.tableofcontentsOverview of Seismic Activity in Turkey and Jordanen_US
dc.description.tableofcontentsOverview of Seismic Activity in Turkeyen_US
dc.description.tableofcontentsOverview of Seismic Activity in Jordanen_US
dc.description.tableofcontentsComparison and Analysis of Historical Earthquakes in Both Countriesen_US
dc.description.tableofcontentsTectonic Plates of Turkey and Jordanen_US
dc.description.tableofcontentsFrequency and Magnitude of Earthquakesen_US
dc.description.tableofcontentsComparison Between the Number of Earthquakes That Occurred on Turkey and Jordan from 2000AD to Dateen_US
dc.description.tableofcontentsSoil Behavior That Observant According to Earthquakes of Turkey, and Jordanen_US
dc.description.tableofcontentsGEOTECHNICAL EARTHQUAKE ENGINEERING STANDARDSen_US
dc.description.tableofcontentsReview of the Current Geotechnical Earthquake Engineering Standards in Turkey and Jordanen_US
dc.description.tableofcontentsA Comparative Study Between American Standard ASCE 7-16 and The Turkish Building Earthquake Code (TBEC-2018) and Turkish Earthquake Code (TEC-2007)en_US
dc.description.tableofcontentsSeismic Design Codes of Turkeyen_US
dc.description.tableofcontentsNew Improvements in the 2018 Turkish Seismic Codeen_US
dc.description.tableofcontentsComparative Study Between (TEC-2007) and (TBEC-2018)en_US
dc.description.tableofcontentsComparison of Similarities and Differences Between the Standards in Both Countriesen_US
dc.description.tableofcontentsSoil Investigation Reporten_US
dc.description.tableofcontentsLocal Ground Classesen_US
dc.description.tableofcontentsBuilding Importance Factorsen_US
dc.description.tableofcontentsLocal Ground Effect Coefficientsen_US
dc.description.tableofcontentsLocal Ground Effect Coefficients for The Short Period Regionen_US
dc.description.tableofcontentsLocal Ground Effect Coefficients for the 1.0 Seconden_US
dc.description.tableofcontentsDefining Earthquake Design Classesen_US
dc.description.tableofcontentsDetermining the Dominant Natural Vibration Period of the Buildingen_US
dc.description.tableofcontentsAccidental Torsionen_US
dc.description.tableofcontentsDeep Foundation Tiesen_US
dc.description.tableofcontentsBase Shear Forceen_US
dc.description.tableofcontentsShallow Foundationsen_US
dc.description.tableofcontentsCorrection Factors to SPTen_US
dc.description.tableofcontentsCalculation of Liquefaction Resistanceen_US
dc.description.tableofcontentsOverturning of Retaining Wallsen_US
dc.description.tableofcontentsHorizontal and Vertical Static-Equivalent Earthquake Coefficientsen_US
dc.description.tableofcontentsThe Resultant of the Total Earth Pressureen_US
dc.description.tableofcontentsCASE STUDIESen_US
dc.description.tableofcontentsConstraints of Modelsen_US
dc.description.tableofcontentsSoil Profile and Parametersen_US
dc.description.tableofcontentsGround Water Tableen_US
dc.description.tableofcontentsFoundation Designen_US
dc.description.tableofcontentsModelsen_US
dc.description.tableofcontentsModel of Turkeyen_US
dc.description.tableofcontentsModel of Jordanen_US
dc.description.tableofcontentsA comparison of the types of seismic waves (Shearer, 2001)en_US
dc.description.tableofcontentsModified Mercalli Intensity (MMI) Scale of 1931 (Kramer, 1996)en_US
dc.description.tableofcontentsComparison between flow liquefaction and cyclic mobility (Idriss and Boulanger, 2008)en_US
dc.description.tableofcontentsLandslides type (Rodriguez, Bommer and Chandler, 1999)en_US
dc.description.tableofcontentsLandslides classification according to depths (Duman, Çan, Emre, Keçer, Doğan, Ateş and Durmaz, 2005)en_US
dc.description.tableofcontentsGündoğdu town losses due to rainfall (Uyeturk, Huraj, Bayraktarogly and Huseyinpasaogly, 2022)en_US
dc.description.tableofcontentsKaramah dam's tests result (Abderahman and Darwish, 2001)en_US
dc.description.tableofcontentsStrike-Slip Faults in Van earthquake area (Taskin, Sezen, Tugsal and Erken, 2013)en_US
dc.description.tableofcontentsPeak ground acceleration values (Sayın, Yön, Onat, Gör, Öncü, Tunç, Bakır, Karaton and Calayır, 2021)en_US
dc.description.tableofcontentsLosses of Gulf of Aqaba earthquake 1995 (Al-Tarazi, 2000)en_US
dc.description.tableofcontentsThe losses in Palestine side (1927 earthquake) (Avni, Bowman, Shapira and Nur, 2002)en_US
dc.description.tableofcontentsComparison between earthquakes of Turkey and Jordanen_US
dc.description.tableofcontentsEarthquake ground motion levels (TBEC-2018) (Sucuoglu, 2018)en_US
dc.description.tableofcontentsLocal ground classes (TBEC, 2018)en_US
dc.description.tableofcontentsLocal ground classes (JBEC, 2022)en_US
dc.description.tableofcontentsComparison between local ground classes of (TBEC-2018 & JBEC-2022)en_US
dc.description.tableofcontentsBuilding importance factor (TBEC-2018, JBEC-2022)en_US
dc.description.tableofcontentsLocal ground effect coefficients for the short period region (TBEC-2018, JBEC-2022) (a)en_US
dc.description.tableofcontentsLocal ground effect coefficients for the short period region (TBEC-2018, JBEC-2022) (b)en_US
dc.description.tableofcontentsLocal ground effect coefficients for the 1.0 second period (TBEC-2018, JBEC-2022) (a)en_US
dc.description.tableofcontentsLocal ground effect coefficients for the 1.0 second period (TBEC-2018, JBEC-2022) (b)en_US
dc.description.tableofcontentsEarthquake design classes (TBEC-2018, JBEC-2022)en_US
dc.description.tableofcontentsThe differences in (Ct) coefficient between (TBEC-2018) and (JBEC-2022)en_US
dc.description.tableofcontentsFactor of safety against overturning of retaining walls in (TBEC-2018 & JBEC-2022)en_US
dc.description.tableofcontentsSoil properties used during PLAXIS analysisen_US
dc.description.tableofcontentsFoundation and pile specificationsen_US
dc.description.tableofcontentsDeformed mesh and total displacements values (Düzce earthquake)en_US
dc.description.tableofcontentsBending moment (M11) values of foundation (Düzce earthquake)en_US
dc.description.tableofcontentsBending moment (M22) values of foundation (Düzce earthquake)en_US
dc.description.tableofcontentsTotal displacement and axial forces of piles (Düzce earthquake)en_US
dc.description.tableofcontentsBending moment (M2) values of piles (Düzce earthquake)en_US
dc.description.tableofcontentsBending moment (M3) values of piles (Düzce earthquake)en_US
dc.description.tableofcontentsBending Moment (M11, M22) Values of Foundation (Dead Sea Earthquake)en_US
dc.description.tableofcontentsAxial force values of piles (Dead Sea earthquake)en_US
dc.description.tableofcontentsBending moment value (M2, M3) of piles (Dead Sea earthquake)en_US
dc.description.tableofcontentsComparison between Turkey and Jordan in earthquake’s PGAen_US
dc.description.tableofcontentsFault displacement (reverse fault displacements) (Glass, 2013)en_US
dc.description.tableofcontentsFault displacement (Glass, 2013)en_US
dc.description.tableofcontentsInternal structure of the earth (Kramer, 1996)en_US
dc.description.tableofcontentsThe main types of plate boundaries (Sandwell, 2001)en_US
dc.description.tableofcontentsThe normal, reverse dip-slip faults (Rafferty, 2011)en_US
dc.description.tableofcontentsBody waves (Kramer, 1996)en_US
dc.description.tableofcontentsSurface waves (Kramer, 1996)en_US
dc.description.tableofcontentsSand boil in Loma Prieta, California, earthquake of October 17, 1989 (Kramer, 1996)en_US
dc.description.tableofcontentsBefore the landslide for Peruvian earthquake 1970 (Kramer, 1996)en_US
dc.description.tableofcontentsAfter the landslide for Peruvian earthquake 1970 (Kramer, 1996)en_US
dc.description.tableofcontentsTurkish national grid for strong-motion seismograph stations (Bakir, Eser, Akkar and Iravul, 2011)en_US
dc.description.tableofcontentsExample for the results of seismic and geotechnical investigations at the site of station (Bakir, Eser, Akkar and Iravul, 2011)en_US
dc.description.tableofcontentsGrain size distribution for 31 samples (Uyeturk, Huraj, Bayraktarogly and Huseyinpasaogly, 2022)en_US
dc.description.tableofcontentsArea of study (Çanakkale) (Beklar, Demirci, Ekinci and Buyuksarac, 2019)en_US
dc.description.tableofcontentsGeological framework of Çanakkale (Beklar, Demirci, Ekinci and Buyuksarac, 2019)en_US
dc.description.tableofcontentsGeological map of Amman-Irbid-Jerash (Al-Amoush, 2016)en_US
dc.description.tableofcontentsSeismicity map of Turkey (Tan, Tapirdamaz, Yoruk, 2008)en_US
dc.description.tableofcontentsAnatolian plate and the region of the earthquake (Chadha, 2023)en_US
dc.description.tableofcontentsLocation of earthquake on EAF, SUF, and KMTJ (Chadha, 2023)en_US
dc.description.tableofcontentsTurkish seismic code comparing with the actual acceleration, linear scale (a), Logarithmic scale (b) (Papazafeiropoulos and Plevris, 2023)en_US
dc.description.tableofcontentsThe movement of the faults causing the Sivrice earthquake (Sayın, Yön, Onat, Gör, Öncü, Tunç, Bakır, Karaton and Calayır, 2021)en_US
dc.description.tableofcontentsLateral spreading displacement (Sayın, Yön, Onat, Gör, Öncü, Tunç, Bakır, Karaton and Calayır, 2021)en_US
dc.description.tableofcontentsThe seismic swarm from 1995 (The major one) to 1997 (Al-Tarazi, 2000)en_US
dc.description.tableofcontentsThe correlation between the geological foundation and the intensity in Aqaba city was examined (Al-Tarazi, 2000)en_US
dc.description.tableofcontentsNumber of earthquakes that occurred in Turkey from 2000 AD (AFAD)en_US
dc.description.tableofcontentsDistribution of the Turkey's earthquakes from 2000 AD (AFAD)en_US
dc.description.tableofcontentsDistribution of the seismic hazard of Turkey up to 2012 (Ilki, Celep, 2012)en_US
dc.description.tableofcontentsGround water level used during PLAXIS analysisen_US
dc.description.tableofcontents3D model of circular piled raft foundationen_US
dc.description.tableofcontentsDistribution of piles within the raft foundationen_US
dc.description.tableofcontentsThe 3D model boundaryen_US
dc.description.tableofcontentsDüzce earthquake time history analysisen_US
dc.description.tableofcontentsTime history analysis by PLAXIS (Düzce earthquake)en_US
dc.description.tableofcontentsDeformed mesh (Düzce earthquake)en_US
dc.description.tableofcontentsTotal displacement of mesh (Düzce earthquake)en_US
dc.description.tableofcontentsBending moments (M11) of foundation (Düzce earthquake)en_US
dc.description.tableofcontentsBending moments (M22) of foundation (Düzce earthquake)en_US
dc.description.tableofcontentsBending moment (M2) of piles (Düzce earthquake)en_US
dc.description.tableofcontentsBending moment (M3) of piles (Düzce earthquake)en_US
dc.description.tableofcontentsSpectral acceleration (Düzce earthquake)en_US
dc.description.tableofcontentsDesign spectral acceleration according to Turkey Code (TBEC-2018)en_US
dc.description.tableofcontentsSeismic hazard map of Turkey (AFAD)en_US
dc.description.tableofcontentsDesign spectral acceleration of Düzceen_US
dc.description.tableofcontentsCorrelation between design spectral acceleration in the Düzce area (red color) and the spectral acceleration of the Düzce Earthquake (blue color)en_US
dc.description.tableofcontentsDead Sea earthquake time history analysisen_US
dc.description.tableofcontentsTime history analysis by PLAXIS (Dead Sea earthquake)en_US
dc.description.tableofcontentsDeformation mesh (Dead Sea earthquake)en_US
dc.description.tableofcontentsTotal displacement of mesh (Dead Sea earthquake)en_US
dc.description.tableofcontentsBending moments (M11) of foundation (Dead Sea earthquake)en_US
dc.description.tableofcontentsBending moments (M22) of foundation (Dead Sea earthquake)en_US
dc.description.tableofcontentsBending moment (M2) values of piles (Dead Sead earthquake)en_US
dc.description.tableofcontentsBending moment (M3) of piles (Dead Sea earthquake)en_US
dc.description.tableofcontentsSpectral acceleration (Dead Sea earthquake)en_US
dc.description.tableofcontentsDesign spectral acceleration according to Jordan Code (JBEC-2022)en_US
dc.description.tableofcontentsSeismic hazard map of Jordan (JBEC-2022)en_US
dc.description.tableofcontentsDesign spectral acceleration of Dead Seaen_US
dc.description.tableofcontentsCorrelation between design spectral acceleration in the Deas Sea area (red color) and the spectral acceleration of the Dead Sea Earthquake (blue color)en_US
dc.identifier.citationHawa, S. M. (2024). Comparison between Turkish and Jordan standards from geotechnical earthquake engineering aspects. İstanbul: Işık Üniversitesi Lisansüstü Eğitim Enstitüsü.en_US
dc.identifier.urihttps://hdl.handle.net/11729/5914
dc.institutionauthorHawa, Shafeeq Mohammaden_US
dc.language.isoenen_US
dc.publisherIşık Üniversitesien_US
dc.relation.publicationcategoryTezen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectTurkish building earthquake code 2018en_US
dc.subjectJordanian building earthquake code 2022en_US
dc.subjectPLAXIS 3D analysisen_US
dc.subjectPiles foundationen_US
dc.subjectGeotechnical earthquake analysisen_US
dc.subjectTürkiye bina deprem yönetmeliği 2018en_US
dc.subjectÜrdün bina deprem yönetmeliği 2022en_US
dc.subjectPLAXIS 3D analizien_US
dc.subjectKazık temelien_US
dc.subjectGeoteknik deprem analizien_US
dc.titleComparison between Turkish and Jordan standards from geotechnical earthquake engineering aspectsen_US
dc.title.alternativeGeoteknik deprem mühendisliği yönünden Türk ve Ürdün standartlarının karşılaştırılmasıen_US
dc.typeMaster Thesisen_US
dspace.entity.typePublication

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Comparison_between_Turkish_and_Jordan_standards_from_geotechnical_earthquake_engineering_aspects.pdf
Boyut:
5.31 MB
Biçim:
Adobe Portable Document Format
Açıklama:
MasterThesis
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: