Assortment optimization with log-linear demand: application at a Turkish grocery store
dc.authorid | 0000-0001-9446-0582 | |
dc.authorid | 0000-0001-6783-6783 | |
dc.authorid | 0000-0002-1150-7064 | |
dc.contributor.author | Hekimoğlu, Mustafa | en_US |
dc.contributor.author | Sevim, İsmail | en_US |
dc.contributor.author | Aksezer, Sezgin Çağlar | en_US |
dc.contributor.author | Durmuş, İpek | en_US |
dc.date.accessioned | 2019-06-07T21:03:25Z | |
dc.date.available | 2019-06-07T21:03:25Z | |
dc.date.issued | 2019-09 | |
dc.department | Işık Üniversitesi, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümü | en_US |
dc.department | Işık University, Faculty of Engineering, Department of Industrial Engineering | en_US |
dc.description.abstract | In retail sector, product variety increases faster than shelf spaces of retail stores where goods are presented to consumers. Hence, assortment planning is an important task for sustained financial success of a retailer in a competitive business environment. In this study, we consider the assortment planning problem of a retailer in Turkey. Using empirical point-of-sale data, a demand model is developed and utilized in the optimization model. Due to nonlinear nature of the model and integrality constraint, we find that it is difficult to obtain a solution even for moderately large product sets. We propose a greedy heuristic approach that generates better results than the mixed integer nonlinear programming in a reasonably shorter period of time for medium and large problem sizes. We also proved that our method has a worst-case time complexity of O(n 2 )while other two well-known heuristics’ complexities are O(n 3 )and O(n 4 ). Also numerical experiments reveal that our method has a better performance than the worst-case as it generates better results in a much shorter run-times compared to other methods. | en_US |
dc.description.version | Publisher's Version | en_US |
dc.identifier.citation | Hekimoğlu, M., Sevim, İ., Aksezer, S. Ç. & Durmuş, İ. (2019). Assortment optimization with log-linear demand: Application at a turkish grocery store. Journal of Retailing and Consumer Services, 50, 199-214. doi:10.1016/j.jretconser.2019.04.007 | en_US |
dc.identifier.doi | 10.1016/j.jretconser.2019.04.007 | |
dc.identifier.endpage | 214 | |
dc.identifier.issn | 0969-6989 | |
dc.identifier.issn | 1873-1384 | |
dc.identifier.scopus | 2-s2.0-85065862389 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 199 | |
dc.identifier.uri | https://hdl.handle.net/11729/1609 | |
dc.identifier.uri | http://dx.doi.org/10.1016/j.jretconser.2019.04.007 | |
dc.identifier.volume | 50 | |
dc.identifier.wos | WOS:000471928200023 | |
dc.identifier.wosquality | Q1 | |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.indekslendigikaynak | Social Sciences Citation Index (SSCI) | en_US |
dc.institutionauthor | Aksezer, Sezgin Çağlar | en_US |
dc.institutionauthor | Durmuş, İpek | en_US |
dc.institutionauthorid | 0000-0002-1150-7064 | |
dc.language.iso | en | en_US |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.publisher | Elsevier Ltd | en_US |
dc.relation.ispartof | Journal of Retailing and Consumer Services | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Optimal-Algorithms | en_US |
dc.subject | Genetic algorithm | en_US |
dc.subject | Retail assortment | en_US |
dc.subject | Model | en_US |
dc.subject | Price | en_US |
dc.subject | Substitution | en_US |
dc.subject | Methodology | en_US |
dc.subject | Products | en_US |
dc.title | Assortment optimization with log-linear demand: application at a Turkish grocery store | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication |