Omnivariate rule induction using a novel pairwise statistical test

Yükleniyor...
Küçük Resim

Tarih

2013-09

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

IEEE Computer Soc

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

Rule learning algorithms, for example, RIPPER, induces univariate rules, that is, a propositional condition in a rule uses only one feature. In this paper, we propose an omnivariate induction of rules where under each condition, both a univariate and a multivariate condition are trained, and the best is chosen according to a novel statistical test. This paper has three main contributions: First, we propose a novel statistical test, the combined 5 x 2 cv t test, to compare two classifiers, which is a variant of the 5 x 2 cv t test and give the connections to other tests as 5 x 2 cv F test and k-fold paired t test. Second, we propose a multivariate version of RIPPER, where support vector machine with linear kernel is used to find multivariate linear conditions. Third, we propose an omnivariate version of RIPPER, where the model selection is done via the combined 5 x 2 cv t test. Our results indicate that 1) the combined 5 x 2 cv t test has higher power (lower type II error), lower type I error, and higher replicability compared to the 5 x 2 cv t test, 2) omnivariate rules are better in that they choose whichever condition is more accurate, selecting the right model automatically and separately for each condition in a rule.

Açıklama

Anahtar Kelimeler

Rule induction, Model selection, Statistical tests, Support vector machines, Ant colony optimization, Classification trees, Learning algorithms, Decision trees

Kaynak

IEEE Transactions on Knowledge and Data Engineering

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

25

Sayı

9

Künye

Yıldız, O. T. (2013). Omnivariate rule induction using a novel pairwise statistical test. IEEE Transactions on Knowledge and Data Engineering, 25(9), 2105-2118. doi:10.1109/TKDE.2012.155